The challenging application of the IBP method in the two-loop calculation of the single top quark production

Mohammad Assadsolimani,

in collaboration with P. Kant, B. Tausk and P. Uwer

HUMBOLDT-UNIVERSITÄT ZU BERLIN

25. Dec. 2013

Introduction

Motivation

NNLO

Tensor Integral

Tarasov's method Projection method

Applications

Heavy Quark Form Factors Single Top Quark Production

Conclusions

Master formula for hadron collisions

RADULERTER

500

$\hat{\sigma}_{a,b}(\mu_r^2,\mu_F^2) \quad \textit{Parton-level cross section}$

• The parton-level cross section can be computed as a series in perturbation theory, using the coupling constant as an expansion parameter

• More precision in calculated results

More precision

Ex.: Total cross section for Higgs production in gluon fusion

[R. Harlander, W. Kilgore Nov. '02]

• *Perturbative convergence* $LO \rightarrow NLO(\approx 70\%)$ *and* $NLO \rightarrow NNLO(\approx 30\%)$

- More precision in calculated results
- New effects

New effects

Ex.: forward-backward charge asymmetry of the top quark

[S. Dittmaier, P. Uwer, S. Weinzierl Apr. '08]

- ● ● ●

-

- More precision in calculated results
- New effects

Exact NLO or NNLO calculations of σ_{hard} needed because of:

- More precision in calculated results
- New effects

Exact NLO or NNLO calculations of σ_{hard} needed because of: Accurate and reliable predictions of parton–level observables.

- More precision in calculated results
- New effects

Exact NLO or NNLO calculations of σ_{hard} needed because of: Accurate and reliable predictions of parton–level observables.

Backgrounds for New Physics Searches

• When NLO corrections are large

- When NLO corrections are large
- When truly high precision is needed

- When NLO corrections are large
- When truly high precision is needed
- *Reliable estimation of the precision can only be obtained by calculating the NNLO corrections*

- When NLO corrections are large
- When truly high precision is needed
- *Reliable estimation of the precision can only be obtained by calculating the NNLO corrections*

For instance single top quark production :

The three main hadronic production modes for single top quark in the Standard Model:

The theoretical status of the single top quark production:

Process	\sqrt{S}	$\sigma_{LO}(pb)$	$\sigma_{\text{NLO}}(pb)$
t–channel	2.0 <i>TeV</i> pp	1.068	1.062
	14.0 <i>TeV</i> pp	152.7	155.9

[B.Harris, E. Laenen, L.Phaf, Z. Sullivan, S. Weinzierl '02]

The theoretical status of the single top quark production:

Process	\sqrt{S}	$\sigma_{LO}(pb)$	$\sigma_{\text{NLO}}(pb)$
t–channel	2.0 <i>TeV</i> pp	1.068	1.062
	14.0 <i>TeV</i> pp	152.7	155.9

[B.Harris, E. Laenen, L.Phaf, Z. Sullivan, S. Weinzierl '02]

No colour exchange at NLO:

Only vertex corrections contribute:

The theoretical status of the single top quark production:

Process	\sqrt{S}	$\sigma_{LO}(pb)$	$\sigma_{\text{NLO}}(pb)$
t–channel	2.0 <i>TeV</i> pp	1.068	1.062
	14.0 <i>TeV</i> pp	152.7	155.9

[B.Harris, E. Laenen, L.Phaf, Z. Sullivan, S. Weinzierl '02]

No colour exchange at NLO:

 $\propto tr[T_a] tr[T_a] = 0$

Only vertex corrections contribute:

Colour exchange at NNLO:

Phenomenology of the single top quark production

nan

Single top quark production

- to study the nature of the weak interaction
- is a source of polarized top quarks (Polarization accessible through angular distributions of decay products)
- to measure directly the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V_{tb}

$$\begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

without assumption of unitarity and three families $\Rightarrow |V_{tb}| = 0.92 \pm 0.10$

[C. Schwanenberger, Moriond QCD and High Energy Interactions, 13 March 2013]

[Alwall, Frederix, Gerard, Giammanco, Herquet, Kalinin, Kou, Lemaitre, Maltoni '07]

In the NNLO-corrections occur tensor integrals

$$\mathbb{I}(d, a_1, \cdots, a_n)[1, k_1^{\mu}, k_2^{\nu}, \cdots] = \int d^d k_1 \int d^d k_2 \frac{\prod_{ij} k_1^{\mu_i} k_2^{\nu_j}}{P_1^{a_1} \cdots P_n^{a_n}}$$

Possibilities to reduce tensor integrals to scalar integrals:

In the NNLO-corrections occur tensor integrals

$$\mathbb{I}(d, a_1, \cdots, a_n)[1, k_1^{\mu}, k_2^{\nu}, \cdots] = \int d^d k_1 \int d^d k_2 \frac{\prod_{ij} k_1^{\mu_i} k_2^{\nu_j}}{P_1^{a_1} \cdots P_n^{a_n}}$$

Possibilities to reduce tensor integrals to scalar integrals:

• By Schwinger parametrization

[O. V. Tarasov, Phys. Rev.'96, Nucl. Phys. '81]

• By projection method

[T. Binoth, E.W.N. Glover, P. Marquard and J.J. van der Bij '02; E.W.N. Glover '04]

In the NNLO-corrections occur tensor integrals

$$\mathbb{I}(d, a_1, \cdots, a_n)[1, k_1^{\mu}, k_2^{\nu}, \cdots] = \int d^d k_1 \int d^d k_2 \frac{\prod_{ij} k_1^{\mu_i} k_2^{\nu_j}}{P_1^{a_1} \cdots P_n^{a_n}}$$

Possibilities to reduce tensor integrals to scalar integrals:

• By Schwinger parametrization

[O. V. Tarasov, Phys. Rev.'96, Nucl. Phys. '81]

• By projection method

[T. Binoth, E.W.N. Glover, P. Marquard and J.J. van der Bij '02; E.W.N. Glover '04]

Tensor reduction \Rightarrow various scalar integrals with the same structure of the integrand however with different powers of propagators

• solve each integral individually

- solve each integral individually
- express all scalar integrals as a linear combination of some basic master integrals, Integration by parts (IBP)

[Chetyrkin, Tkachov '81]

- solve each integral individually
- express all scalar integrals as a linear combination of some basic master integrals, Integration by parts (IBP)

[Chetyrkin, Tkachov '81]

Reduction techniques:

- solve each integral individually
- express all scalar integrals as a linear combination of some basic master integrals, Integration by parts (IBP)

[Chetyrkin, Tkachov '81]

Reduction techniques:

• Laporta: efficient algorithm to solve linear system of IBP–Identities

- solve each integral individually
- express all scalar integrals as a linear combination of some basic master integrals, Integration by parts (IBP)

[Chetyrkin, Tkachov '81]

Reduction techniques:

• Laporta: efficient algorithm to solve linear system of IBP–Identities

AIR	[Anastasiou, Lazopoulos '04]
FIRE	[Smirnov '08]
Crusher	[Marquard, Seidel (to be published)]
REDUZE 1&2	[Studerus '09; Manteuffel, Studerus '12]

Tensor reduction leads to a very large number of scalar integrals which are shifted in dimension and have other powers of propagators

$$\mathbb{J}(d, a_1, \cdots, a_n)[\kappa_1^{\mu}\kappa_2^{\nu}, \cdots] \to g^{\mu\nu}\sum_i \mathbb{J}(d+x_i, a_1^i, \cdots, a_n^i)[1]$$

Example for two loop corrections to Axial Vector Form Factors

$$\begin{split} \mathfrak{I}(d,1,1,1,1,1,1) & [1,k_1^{\mu_1}k_1^{\mu_2}k_2^{\nu_1}k_2^{\nu_2}] \to \mathfrak{I}(2+d,2,1,1,1,1,2) + \\ & \cdots + \mathfrak{I}(4+d,1,1,1,2,3,1) + \cdots + \mathfrak{I}(8+d,3,3,3,2,1,2) \end{split}$$

Shift in the dimension

$$\mathcal{J}^{(d)}(\{s_i\}_{i}\{\mathfrak{m}_{s}^{2}\}) \propto \prod_{j=1}^{N} c_j \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{d\alpha_{j}\alpha_{j}^{\alpha_{j}-1}}{[D(\alpha)]^{\frac{d}{2}}} e^{i\left[\frac{Q(\{s_{i}\},\alpha)}{D(\alpha)} - \sum_{l=1}^{N} \alpha_{l}(\mathfrak{m}_{l}^{2} - i\varepsilon)\right]}$$

$$\mathcal{J}^{(d)}(\{s_i\},\{m_s^2\}) \propto \prod_{j=1}^N c_j \int_0^\infty \cdots \int_0^\infty \frac{d\alpha_j \alpha_j^{\alpha_j-1}}{[D(\alpha)]^{\frac{d}{2}}} e^{i\left[\frac{Q(\{s_i\},\alpha)}{D(\alpha)} - \sum_{l=1}^N \alpha_l(m_l^2 - i\varepsilon)\right]}$$

$$\mathcal{J}^{(d)}(\{s_i\},\{m_s^2\}) \propto \prod_{j=1}^N c_j \int_0^\infty \cdots \int_0^\infty \frac{d\alpha_j \alpha_j^{\alpha_j-1}}{[D(\alpha)]^{\frac{d}{2}}} e^{i\left[\frac{Q(\{s_i\},\alpha)}{D(\alpha)} - \sum_{l=1}^N \alpha_l(m_l^2 - i\varepsilon)\right]}$$

 $D\left(\frac{\partial}{\partial m_j^2}\right)$ (polynomial differential operator) obtained from $D(\alpha)$ by substituting $\alpha_i \rightarrow \partial_j \equiv \partial/\partial m_j^2$. The application of $D(\partial_j)$ to the scalar integral:

$$\mathfrak{I}^{(d-2)}(\{s_i\},\{m_s^2\}) \propto D(\mathfrak{d}_j) \ \mathfrak{I}^{(d)}(\{s_i\},\{m_s^2\}),$$

$$\mathcal{J}^{(d)}(\{s_i\},\{m_s^2\}) \propto \prod_{j=1}^N c_j \int_0^\infty \cdots \int_0^\infty \frac{d\alpha_j \alpha_j^{\alpha_j-1}}{[D(\alpha)]^{\frac{d}{2}}} e^{i\left[\frac{Q(\{s_i\},\alpha)}{D(\alpha)} - \sum_{l=1}^N \alpha_l(m_l^2 - i\varepsilon)\right]}$$

 $D\left(\frac{\partial}{\partial m_j^2}\right)$ (polynomial differential operator) obtained from $D(\alpha)$ by substituting $\alpha_i \rightarrow \partial_j \equiv \partial/\partial m_j^2$. The application of $D(\partial_j)$ to the scalar integral:

$$\mathfrak{I}^{(d-2)}(\{s_i\},\{m_s^2\}) \propto D(\mathfrak{d}_j) \ \mathfrak{I}^{(d)}(\{s_i\},\{m_s^2\}),$$

apply this to master integrals

$$\mathbb{I}_{master}(d-2,a_1,\cdots,a_n) = \sum_i c_i \mathbb{I}(d,a_1^i,\cdots,a_n^i),$$

all scalar integrals in rhs. of that equation have to be replaced by master integrals.

i.e.

$$\mathbb{J}_{master}(d-2, a_1, \cdots, a_n) = \sum_j D_j \mathbb{J}_{master}(d, a_1^j, \cdots, a_n^j),$$

all scalar integrals in rhs. of that equation have to be replaced by master integrals.

i.e.

$$\mathbb{J}_{master}(d-2, a_1, \cdots, a_n) = \sum_j D_j \mathbb{J}_{master}(d, a_1^j, \cdots, a_n^j),$$

we have for all master integrals:

$$\begin{pmatrix} \mathcal{I}_{1}^{d-2} \\ \vdots \\ \mathcal{I}_{l}^{d-2} \end{pmatrix}_{\text{master}} = D_{ll} \cdot \begin{pmatrix} \mathcal{I}_{1}^{d} \\ \vdots \\ \mathcal{I}_{l}^{d} \end{pmatrix}_{\text{master}}$$

where l is the number of master integrals.

By this method we get scalar products between loop momenta and external momenta and no shift in the dimension of the integrals

$$\mathbb{J}(d, a_1, \cdots, a_n)_{[1,k_1^{\mu}, k_2^{\mu}, \cdots]} \to g^{\mu\nu} \sum_{ij} \mathbb{J}(d, a_1, \cdots, a_n)_{[1]} k_i p_j$$

Example for two-loop corrections to Axial Vector Form Factors

$$\begin{split} \mathfrak{I}(d,1,1,1,1,1,1) & [1,\kappa_1^{\mu_1}\kappa_1^{\mu_2}\kappa_2^{\nu_1}\kappa_2^{\nu_2}] \to \mathfrak{I}(d,-2,1,1,1,1,1) + \cdots \\ & + \mathfrak{I}(d,-1,0,1,1,1,1) + \cdots + \mathfrak{I}(d,0,1,1,1,-2,-2) \end{split}$$

The general tensor structure for the amplitude A:

$$\mathcal{A} = \sum_{i=1}^{n} B_{i}(t, u, s) \mathcal{S}_{i},$$

where t,u and s are the Mandelstam variables and $S_{\rm t}$ are the Dirac structures.

Projectors for the tensor coefficients:

$$S_{j}^{\dagger} \mathcal{A} = \sum_{i=1}^{n} B_{i}(t, u, s) \underbrace{\left(S_{j}^{\dagger} S_{i}\right)}_{\mathcal{M}_{ji}} \Rightarrow B_{i}(t, u, s) = \sum_{i} \mathcal{M}_{ij}^{-1} \underbrace{\left(S_{j}^{\dagger} \mathcal{A}\right)}_{\mathcal{M}_{ji}}$$

RADULERTE

The general tensor structure for the amplitude A:

$$\mathcal{A} = \sum_{i=1}^{n} B_{i}(t, u, s) \mathcal{S}_{i},$$

where t,u and s are the Mandelstam variables and $S_{\rm i}$ are the Dirac structures.

Projectors for the tensor coefficients:

$$S_{j}^{\dagger} \mathcal{A} = \sum_{i=1}^{n} B_{i}(t, u, s) \underbrace{\left(S_{j}^{\dagger} S_{i}\right)}_{\mathcal{M}_{ji}} \Rightarrow B_{i}(t, u, s) = \sum_{i} \mathcal{M}_{ij}^{-1} \underbrace{\left(S_{j}^{\dagger} \mathcal{A}\right)}_{\mathcal{H}}$$

essential for this method : to be able to calculate the inverse matrix \mathfrak{M}_{ij}^{-1}

Tarasov's method

- Positive powers for propagators (the sum of the powers of all propagators is large)
- Calculate the inverse matrix in order to shift back the dimension

Tarasov's method

- Positive powers for propagators (the sum of the powers of all propagators is large)
- Calculate the inverse matrix in order to shift back the dimension

Projection method

- Negative powers for propagators
- Calculate the inverse matrix for the projector coefficients

Tarasov's method

- Positive powers for propagators (the sum of the powers of all propagators is large)
- Calculate the inverse matrix in order to shift back the dimension

Projection method

- Negative powers for propagators
- Calculate the inverse matrix for the projector coefficients

We implemented both methods to calculate the two loop corrections to Heavy Quark Vector and axial Vector Form Factors:

[W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia, E. Remiddi '04]

[J. Gluza, A. Mitov, S. Moch, T. Riemann '09]

Mohammad Assadsolimani The application of the IBP in the two-loop calculation of the single top quark production 22

Two-loop corrections to heavy quark form factors

Two-loop corrections to heavy quark form factors

There are 6 Dirac structures (Heavy Quark Vector and axial Vector

Form Factors):

$$\begin{array}{l} & \mathcal{S}_1 = \bar{u}(q_1)(1+\gamma_5)u(p_2)p_2^\mu \\ & \mathcal{S}_2 = \bar{u}(q_1)(1-\gamma_5)u(p_2)p_2^\mu \\ & \mathcal{S}_3 = \bar{u}(q_1)(1+\gamma_5)u(p_2)q_1^\mu \\ & \mathcal{S}_4 = \bar{u}(q_1)(1-\gamma_5)u(p_2)q_1^\mu \\ & \mathcal{S}_5 = \bar{u}(q_1)(1+\gamma_5)\gamma_\mu u(p_2) \\ & \mathcal{S}_6 = \bar{u}(q_1)(1-\gamma_5)\gamma_\mu u(p_2) \end{array}$$

$$\begin{split} & \mathcal{S}_{1} = \bar{u}(q_{1})(1+\gamma_{5})u(p_{2})p_{2}^{\mu} \\ & \mathcal{S}_{2} = \bar{u}(q_{1})(1-\gamma_{5})u(p_{2})p_{2}^{\mu} \\ & \mathcal{S}_{3} = \bar{u}(q_{1})(1+\gamma_{5})u(p_{2})q_{1}^{\mu} \\ & \mathcal{S}_{4} = \bar{u}(q_{1})(1-\gamma_{5})u(p_{2})q_{1}^{\mu} \\ & \mathcal{S}_{5} = \bar{u}(q_{1})(1+\gamma_{5})\gamma_{\mu}u(p_{2}) \\ & \mathcal{S}_{6} = \bar{u}(q_{1})(1-\gamma_{5})\gamma_{\mu}u(p_{2}) \end{split}$$

	Projection	Tarasov
number of integrals	564	671
max sum of powers		
of propagators	6	14
max sum of negative		
powers of propagators	4	0
reduction time	7500 s	433260 s

$$\begin{split} & \delta_1 = \bar{u}(q_1)(1+\gamma_5)u(p_2)p_2^{\mu} \\ & \delta_2 = \bar{u}(q_1)(1-\gamma_5)u(p_2)p_2^{\mu} \\ & \delta_3 = \bar{u}(q_1)(1+\gamma_5)u(p_2)q_1^{\mu} \\ & \delta_4 = \bar{u}(q_1)(1-\gamma_5)u(p_2)q_1^{\mu} \\ & \delta_5 = \bar{u}(q_1)(1+\gamma_5)\gamma_{\mu}u(p_2) \\ & \delta_6 = \bar{u}(q_1)(1-\gamma_5)\gamma_{\mu}u(p_2) \end{split}$$

	Projection	Tarasov
number of integrals	564	671
max sum of powers		
of propagators	6	14
max sum of negative		
powers of propagators	4	0
reduction time	7500 s	433260 s

Now one may come to the conclusion:

$$\begin{split} & \mathcal{S}_{1} = \bar{u}(q_{1})(1+\gamma_{5})u(p_{2})p_{2}^{\mu} \\ & \mathcal{S}_{2} = \bar{u}(q_{1})(1-\gamma_{5})u(p_{2})p_{2}^{\mu} \\ & \mathcal{S}_{3} = \bar{u}(q_{1})(1+\gamma_{5})u(p_{2})q_{1}^{\mu} \\ & \mathcal{S}_{4} = \bar{u}(q_{1})(1-\gamma_{5})u(p_{2})q_{1}^{\mu} \\ & \mathcal{S}_{5} = \bar{u}(q_{1})(1+\gamma_{5})\gamma_{\mu}u(p_{2}) \\ & \mathcal{S}_{6} = \bar{u}(q_{1})(1-\gamma_{5})\gamma_{\mu}u(p_{2}) \end{split}$$

	Projection	Tarasov
number of integrals	564	671
max sum of powers		
of propagators	6	14
max sum of negative		
powers of propagators	4	0
reduction time	7500 s	433260 s

Now one may come to the conclusion: \Rightarrow The projection method is an alternative method for the multi-loop calculation!

$$\begin{split} & \mathcal{S}_{1} = \bar{u}(q_{1})(1+\gamma_{5})u(p_{2})p_{2}^{\mu} \\ & \mathcal{S}_{2} = \bar{u}(q_{1})(1-\gamma_{5})u(p_{2})p_{2}^{\mu} \\ & \mathcal{S}_{3} = \bar{u}(q_{1})(1+\gamma_{5})u(p_{2})q_{1}^{\mu} \\ & \mathcal{S}_{4} = \bar{u}(q_{1})(1-\gamma_{5})u(p_{2})q_{1}^{\mu} \\ & \mathcal{S}_{5} = \bar{u}(q_{1})(1+\gamma_{5})\gamma_{\mu}u(p_{2}) \\ & \mathcal{S}_{6} = \bar{u}(q_{1})(1-\gamma_{5})\gamma_{\mu}u(p_{2}) \end{split}$$

	Projection	Tarasov
number of integrals	564	671
max sum of powers		
of propagators	6	14
max sum of negative		
powers of propagators	4	0
reduction time	7500 s	433260 s

Now one may come to the conclusion: \Rightarrow The projection method is an alternative method for the multi-loop calculation!

but · · ·

90

Two-loop corrections to single top quark production

There are three topological families:

Two-loop corrections to single top quark production

There are three topological families:

Non Planar double boxes

and 11 Dirac structures:

 $S_1 = \overline{u}(q_1) \gamma_7 u(p_2) \overline{u}(q_2) \gamma_6 \gamma_{q_1} u(p_1)$ $S_2 = \overline{\mathfrak{u}}(\mathfrak{q}_1) \gamma_6 \gamma_{\mathfrak{p}_1} \mathfrak{u}(\mathfrak{p}_2) \overline{\mathfrak{u}}(\mathfrak{q}_2) \gamma_6 \gamma_{\mathfrak{q}_1} \mathfrak{u}(\mathfrak{p}_1)$ $S_3 = \overline{u}(q_1) \gamma_6 \gamma_{\mu_1} u(p_2) \overline{u}(q_2) \gamma_6 \gamma_{\mu_1} u(p_1)$ $S_4 = \overline{\mathfrak{u}}(\mathfrak{q}_1) \gamma_7 \gamma_{\mathfrak{u}_1} \gamma_{\mathfrak{p}_1} \mathfrak{u}(\mathfrak{p}_2) \overline{\mathfrak{u}}(\mathfrak{q}_2) \gamma_6 \gamma_{\mathfrak{u}_1} \mathfrak{u}(\mathfrak{p}_1)$ $S_5 = \overline{\mathfrak{u}}(\mathfrak{q}_1) \gamma_7 \gamma_{\mathfrak{u}_1} \gamma_{\mathfrak{u}_2} \mathfrak{u}(\mathfrak{p}_2) \overline{\mathfrak{u}}(\mathfrak{q}_2) \gamma_6 \gamma_{\mathfrak{u}_1} \gamma_{\mathfrak{u}_2} \gamma_{\mathfrak{q}_1} \mathfrak{u}(\mathfrak{p}_1)$ $S_6 = \overline{u}(q_1) \gamma_6 \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{p_1} u(p_2) \overline{u}(q_2) \gamma_6 \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{q_1} u(p_1)$ $S_7 = \overline{u}(q_1) \gamma_6 \gamma_{u_1} \gamma_{u_2} \gamma_{u_3} u(p_2) \overline{u}(q_2) \gamma_6 \gamma_{u_1} \gamma_{u_2} \gamma_{u_3} u(p_1)$ $S_8 = \overline{u}(q_1) \gamma_7 \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{\mu_3} \gamma_{p_1} u(p_2) \overline{u}(q_2) \gamma_6 \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{\mu_3} u(p_1)$ $S_9 = \overline{u}(q_1) \gamma_7 \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{\mu_3} \gamma_{\mu_4} u(p_2) \overline{u}(q_2) \gamma_6 \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{\mu_3} \gamma_{\mu_4} \gamma_{q_1} u(p_1)$ $S_{10} = \overline{\mathfrak{u}}(\mathfrak{q}_1) \gamma_6 \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{\mu_3} \gamma_{\mu_4} \gamma_{p_1} \mathfrak{u}(p_2) \overline{\mathfrak{u}}(\mathfrak{q}_2) \gamma_6 \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{\mu_3} \gamma_{\mu_4} \gamma_{q_1} \mathfrak{u}(p_1)$ $S_{11} = \overline{u}(q_1) \gamma_6 \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{\mu_3} \gamma_{\mu_4} \gamma_{\mu_5} u(p_2) \overline{u}(q_2) \gamma_6 \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{\mu_3} \gamma_{\mu_4} \gamma_{\mu_5} u(p_1)$

Two-loop corrections to single top quark production

• Vertex corrections: both methods

Vertex corrections

RADULERTEN

$$\begin{split} & \left[n_{*}^{2} \operatorname{rc}_{+} g^{4} \left\{ s_{1} \left[\frac{1}{m_{*}^{2}} \left(\frac{-8 - 11_{1} + \epsilon^{2}}{2\epsilon(t-1)^{3}} - \frac{-71 - 275_{t} + 44_{t}^{2}}{12(t-1)^{3}} + \sigma(\epsilon) \right) \bigoplus \left(-\frac{44_{t}}{3m_{*}^{2}(t-1)^{3}} + \sigma(\epsilon) \right) \bigoplus \left(-\frac{2n_{*}}{3m_{*}^{2}(t-1)} + \sigma(\epsilon) \right) \right) \right] \right\} \\ & \left(-\frac{2n_{*}}{3m_{*}^{2}(t-1)} + \sigma(\epsilon) \right) = \left(-\frac{8 - 11_{t} + \epsilon^{2}}{m_{*}^{2}} + \frac{-103 - 226_{t} + 41_{t}^{2}}{18(t-1)^{3}} + \sigma(\epsilon) \right) \right) \\ & \left(-\left(\frac{2n_{*}}{3m_{*}^{2}(t-1)} + \sigma(\epsilon) \right) \right) = \left(-\frac{2n_{*}}{m_{*}^{2}} + \frac{1}{m_{*}^{2}} \left(-\frac{-8 - 11_{t} + \epsilon^{2}}{18(t-1)^{3}} + \frac{-103 - 226_{t} + 41_{t}^{2}}{18(t-1)^{3}} + \sigma(\epsilon) \right) \right) \\ & \left(+ \left(\frac{2n_{*}}{3m_{*}^{2}(t-1)} + \sigma(\epsilon) \right) \right) = \left(-\frac{2n_{*}}{m_{*}^{2}(t-1)} + \sigma(\epsilon) \right) = \left(-\frac{2n_{*}}{3(t-1)} + \sigma(\epsilon) \right) \\ & \left(+ \frac{2n_{*}}{3m_{*}^{2}(t-1)} + \sigma(\epsilon) \right) = \left(-\frac{2n_{*}}{3t(t-1)^{2}} + \frac{2n_{*}}{2} + \frac{2n_{*}}{3(t-1)^{2}} + \sigma(\epsilon) \right) = \left(-\frac{2n_{*}}{3t(t-1)^{2}} + \frac{2n_{*}}{2} + \frac{2n_{*}}{3t(t-1)^{2}} + \sigma(\epsilon) \right) \\ & \left(-\frac{2n_{*}}{3t(t-1)^{2}} + \frac{2n_{*}}{2} + \frac{2n_{*}}{3t(t-1)^{2}} + \sigma(\epsilon) \right) = \left(-\frac{2n_{*}}{3t(t-1)^{2}} + \frac{2n_{*}^{2}}{3t(t-1)^{2}} + \frac{2n_{*}^{2}}{9(t-1)^{2}} + \sigma(\epsilon) \right) \\ & \left(-\frac{2n_{*}}}{3t(t-1)^{2}} + \frac{2n_{*}^{2}}{3t(t-1)^{2}} + \frac{2n_{*}^{2}}{3t(t-1)^{2}} + \sigma(\epsilon) \right) = \left(-\frac{2n_{*}}}{3t(t-1)^{2}} + \frac{2n_{*}^{2}}{9(t-1)^{2}} + \frac{2n_{*}^{2}}{9(t-1)^{2}} + \sigma(\epsilon) \right) = \left(-\frac{2n_{*}}}{3t(t-1)^{2}} + \sigma(\epsilon) \right) = \left(-\frac{2n_{*}}}{3t(t-1)^{2}} + \frac{2n_{*}^{2}}{9(t-1)^{2}} + \frac{2n_{*}^{2}}{9(t-1)^{2}} + \sigma(\epsilon) \right) = \left(-\frac{2n_{*}}}{3t(t-1)^{2}} + \frac{2n_{*}^{2}}{3t(t-1)^{2}} + \frac{2n_{*}^{2}}{9(t-1)^{2}} + \sigma(\epsilon) \right) = \left(-\frac{2n_{*}}}{3t(t-1)^{2}} + \frac{2n_{*}^{2}}{3t(t-1)^{2}} + \frac{2n_{*}^{2}}{9(t-1)^{2}} + \frac{2n_{*}^{2}}{2t(t-1)^{2}} + \frac{2n_{*}^{2}}{2t(t-1$$

Mohammad Assadsolimani The application of the IBP in the two-loop calculation of the single top quark production 26

- Vertex corrections: both methods \checkmark
- Planar double boxes : projection method

 \checkmark reduction up to 4 scalar products with REDUZE2 and CRUSHER

- \checkmark consistency checks of the reduction tables
- ✓ calculation of the corresponding diagrams
- ✓ check of the end results

- Vertex corrections: both methods \checkmark
- Planar double boxes : projection method \checkmark

- Vertex corrections: both methods \checkmark
- Planar double boxes : projection method \checkmark
- Non Planar double boxes: a challenge !

RADULERTER

- Reduction to master integrals: need four scalar products
- Rather simpler topologies :

- Topologies 3 and 4 are completely reduced
- REDUZE2 reduced up to 3 scalar products, fourth is challenging!
- More complicated topologies:

Conclusions

- It is important to consider higher order contributions in the perturbation series
- We have seen two possibilities to reduce tensor integrals to scalar integrals
- The choice of the reduction method determines how difficult the next step (IBP) is
- We calculated the two loop vertex corrections to the single top quark production
- As a test of our setup, we have calculated the O(α_s²) contributions to the Heavy Quark Vector and Axial Vector Form Factors, confirming the results of Bernreuther et al. and Gluza et al.
- We computed also the double box contributions, however the application of the IBP method is not trivial

Mohammad Assadsolimani The application of the IBP in the two-loop calculation of the single top quark production 32

Using standard software to reduce $\mathfrak{I}(1,1,1,1,1,1,1,-\mathfrak{a}_8,-\mathfrak{a}_9)$ $|a_8| + |a_9| = 4$, will generate large number of seeds in sub sectors 6 (allowed 1 dot). \Rightarrow bottleneck for reduction! One alternative approach:

> 1. Consider the given integrals $\mathfrak{I}(1, 1, 1, 1, 1, 1, 1, -a_8, -a_9)$, $|\mathbf{a}_{8}| + |\mathbf{a}_{9}| = 4$ as seeds

2. Determine all IBP-Relations, in which these integrals occur Example

In[17]:= t1ibp[[7]] /. {a1 ->1,a2->1,a3->1,a4->1,a5->1,a6->1,a7->1,a8->-2,a9->-2} Out[17] = -INT[0, 1, 1, 1, 1, 1, 2, -2, -2] + 2 INT[1, 0, 1, 1, 1, 1, 1, -2, -1] -INT[1, 0, 1, 1, 1, 1, 2, -2, -2] - INT[1, 0, 1, 1, 1, 2, 1, -2, -2] -INT[1, 0, 2, 1, 1, 1, 1, -2, -2] + INT[1, 1, 1, 0, 1, 1, 2, -2, -2] + INT[1, 1, 1, 0, 1, 2, 1, -2, -2] + (-3 + d) INT[1, 1, 1, 1, 1, 1, 1, -2, -2] + 2 t INT[1, 1, 1, 1, 1, 1, 1, -2, -1] + INT[0, 1, 1, 1, 1, 1, 1, 2, -3, -2] -(mw² + s + t) INT[1, 1, 1, 1, 1, 1, 2, -2, -2]

- 3. Solve each IBP relation for such integrals $\mathcal{I}(1, 1, 1, 1, 1, 1, 1, -a_8, -a_9)$ with 4 scalar products
- 4. Consider all other integrals with 4 scalar products and 1 dot in the sub sectors with 6 propagators as seeds nan

Topology	# Diagrams	reduction	performed checks
Vertex corrections	29	\checkmark	\checkmark
Planar double boxes	6	\checkmark	\checkmark
Non Planar double boxes	12	work in progress	—

There are two most complicated topologies, which could not be reduced completely until now :


```
identities:
       ibp:
         - \{ r: [t, t+1], s: [3, 4] \}
topo2 6 125 6 3 1 -3 1 1 1 1 1 0 0
topo2 6 125 6 4 1 -1 1 1 1 1 1 1 -1 -2
topo2 6 125 6 4 1 -1 1 1 1 1 1 0 -3
topo2 6 125 6 4 1 0 1 1 1 1 1 -4 0
topo2 6 125 7 4 1 0 1 1 1 1 2 -4 0
topo2 6 125 7 4 1 0 1 1 1 1 2 -3 -1
topo2 6 125 7 4 1 0 1 1 1 1 2 -2 -2
topo2 6 125 7 4 1 0 1 1 1 1 2 -1 -3
topo2 6 125 7 4 1 0 1 1 1 1 2 0 -4
```

grep topo2 seeds_topo2_6_125_ibp|wc 175 2450 6636

э

topo2	6	125	6	3	1	-3 1 1 1 1 1 0 0
topo2	6	125	6	3	1	-2 1 1 1 1 1 1 0
topo2	6	125	6	3	1	-2 1 1 1 1 1 0 -1
topo2	6	125	6	3	1	-1 1 1 1 1 1 1 -2 0
topo2	6	125	6	3	1	-1 1 1 1 1 1 1 -1 -1
topo2	6	125	6	3	1	-1 1 1 1 1 1 0 -2
topo2	6	125	6	3	1	0 1 1 1 1 1 -3 0
topo2	6	125	6	3	1	0 1 1 1 1 1 -2 -1
topo2	6	125	6	3	1	0 1 1 1 1 1 1 -1 -2
topo2	6	125	6	3	1	0 1 1 1 1 1 0 -3
topo2	6	125	6	4	1	-4 1 1 1 1 1 0 0
topo2	6	125	6	4	1	-3 1 1 1 1 1 1 0
topo2	6	125	6	4	1	-3 1 1 1 1 1 0 -1
topo2	6	125	6	4	1	-2 1 1 1 1 1 -2 0
topo2	6	125	6	4	1	-2 1 1 1 1 1 1 -1 -1
topo2	6	125	6	4	1	-2 1 1 1 1 1 0 -2
topo2	6	125	6	4	1	-1 1 1 1 1 1 -3 0
topo2	6	125	6	4	1	-1 1 1 1 1 1 1 -2 -1
topo2	6	125	6	4	1	-1 1 1 1 1 1 1 -1 -2
topo2	6	125	6	4	1	-1 1 1 1 1 1 0 -3
topo2	6	125	6	4	1	0 1 1 1 1 1 -4 0
topo2	6	125	6	4	1	0 1 1 1 1 1 -3 -1
topo2	6	125	6	4	1	0 1 1 1 1 1 1 -2 -2
topo2	6	125	6	4	1	0 1 1 1 1 1 1 -1 -3
topo2	6	125	6	4	1	0 1 1 1 1 1 0 -4
topo2	6	125	7	4	1	0 1 1 1 1 2 -2 -2
topo2	6	125	7	3	1	0 1 1 1 2 1 -2 -1

æ

< ≣

Mohammad Assadsolimani _____ The application of the IBP in the two-loop calculation of the single top quark production ______

Extraction of Vtb

⇒ good agreement with Standard Model

👖 Single Top Quark Production at the Tevatron 🛛 - Christian Schwanenberger - Moriond QCD 16 🚺

Mohammad Assadsolimani The application of the IBP in the two-loop calculation of the single top quark production 3