

Silicon Sensor R&D for CMS Upgrade

Thomas Bergauer (HEPHY Vienna)

IPM Teheran

8 October 2013

Content

- Motivation
- Baseline Layouts for Phase 2 Upgrade
- Developments with alternative Vendors
- HPK campaign

The High Luminosity LHC and CMS

Upgrade of the LHC by 2022 to achieve 5x the current design luminosity: $5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

- Original LHC integrated luminosity: ~300 fb⁻¹
- Integrated luminosity with upgrade: ~ 3000 fb⁻¹
- → Significant gain in collected events!

Current CMS Tracker was designed to operate for 10 years in LHC environment

– End of lifetime reached by ~2020

→ Replacement necessary to keep CMS running

Track Density at 10³⁵ cm⁻²s⁻¹

Leakage Current at 700fb⁻¹

More radiation-hard sensors needed

Motivation

- High luminosity LHC
 - L= 10^{34} cm⁻²s⁻¹ to L= $5^{10^{34}}$ cm⁻²s⁻¹
- CMS Tracker performance affected by higher luminosity
- More radiation damage in silicon sensors
 - Higher leakage current
 - Higher depletion voltage
 - Lower signal (signal to noise)
- More protons per bunch
 - More tracks
 - Higher occupancy
- Phase II Upgrade of CMS Tracker
 - Campaign to find sensor baseline for the future CMS Tracker

Integrated Luminosity L_{int}=3000fb⁻¹

BASELINE LAYOUTS FOR TRACKER AFTER PHASE 2 UPGRADE

Current module design

5 cm long strips (both sides) 90 µm pitch P = 2.72 W ~ 92 cm² active area

2.4 cm long strips + pixels
100 μm pitch
P = 5.01 W
~ 44 cm² active area

Current sensors on 6" wafers

Almost **square sensor**: optimal use of the wafer

2S

Smaller **PS sensors** still fit into almost square surface

PSPS

6" diameter

Barrel + End-cap baseline

2S Module: Strip Sensor

PS Module: Strip Sensor

PS Module: Pixel Sensor

What has changed since the 90ies?

CMS Design was done ~1995

- Silicon surface
 - Today: Up to 200 m² (CMS)
 - Similar demand for upgrades of CMS and ATLAS
- Wafer Size
 - NA11 started with 2" and 3"
 - Today 6" (150 mm) is standard
 - → Introduced in the Industry in the 80ies!
 - → Effort to bring silicon detector vendors to invest in 8" production technology.

Barrel+Endcap 8" wafers

	2SL	2S _S	PS	Total	
Modules	3'680	3'696	6'846	14'222 —	
Sensors	7'360	7'392	6'846 strip 6'846 pixel	28'444	Reasonably large gain
Wafers	7'360	3'696	2'282 strip 2'282 pixel	15'620 —	
Power [kW] (FE+sensors)	10.0+2.0	10.0+1.4	34.3+3.1	54.4+6.4	23'308 wafers (6" baseline) 16

24

Basic trigger module concept

• Compare binary pattern of hit pixels on upper and lower sensors

New readout scheme

Digital readout instead of analog one

- Channel fires if signal above threshold
- Seed channel becomes more important
- No center of gravity to improve position resolution
- Power reduction by ~10 per channel

module

LP-GBT

(CERN) Hybrid (CERN)

CBC1 readout chip

Development of a new readout chip

- IBM 130nm CMOS process
- binary, unsparsified architecture
 - retains chip and system simplicity
 - but no pulse height data
- designed for ~2.5 5cm μ strips < ~ 10 pF
- 128 channels, 50 μm pitch wire-bond
- either polarity input signal
- not contributing to L1 trigger
- powering test features:
 - 2.5 -> 1.2 DC-DC converter
 - LDO regulator (1.2 -> 1.1) feeds analogue FE
- fast (SLVS) and slow (I2C) control

interfaces

linear drop out regulator

CBC -> CBC2: New features

- 250µm pitch C4 layout
 - aim for commercially assembled module
 - some gains in bond inductance
 - back edge wire-bond pads for wafer probe
 - 254 channels for 127 + 127 strips
 - correlation logic for stub formation
 - between top & bottom strips
 - vetoes wide clusters
 - Test pulse
 - no time to implement on CBC
 - & other minor circuit improvements
 - received Jan 2013 fully functional

2S mini-module

- Three prototypes assembled using CBC2 chips and two Infineon baby sensors
 - Now under test in lab
 - Beamtest scheduled for week of 25 November

Noise Issues on CBC2 mini-module

- 4 STS sensors (batch 1) have been used to build two CBC2 mini-modules
- For both modules the lower sensor needs higher bias

Vbias: 20 - 400 V

Silicon Sensor R&D for CMS Upgrade

CBC chip road map

Power Distribution Options

- \rightarrow supply power at higher voltage i.e. lower current
- \rightarrow cable loss $P_{loss} = \mathbf{R} \cdot \mathbf{I}^2$ is reduced by factor \mathbf{r}^2 !

Silicon Sensor R&D for CMS Upgrade

DC-DC Powering: Buck Converters

operation principle

output voltage is regulated via feed-back loop by adjustment of

duty cycle $D = \frac{t_{on}}{T}$: $V_{out} = D \cdot V_{in}$

 $V_{out} = D \cdot V_{in}$ for lossless converter

main parameters

conversion ration

switching frequency

efficiency

current ripple at inductor

$$r = \frac{V_{in}}{V_{out}} = 2...10$$
$$f = 1...4 \text{ MHz}$$
$$n = \frac{P_{out}}{P_{out}} = 60$$

 $\eta = \frac{I_{out}}{P_{in}} = 60...90\%$ $\Delta I_L = \frac{V_{out} (1 - D)}{L f}$

custom development necesssary

- radiation hard ASIC
- air core inductor for operation in magnetic field

$$V_{in} \bigoplus_{i=1}^{n} \underbrace{I_{on}}_{i=1}^{n} \underbrace{I_{$$

Timeline for Sensor Procurement

- Tentative sensor procurement timeline:
 - Mid 2014: Market survey
 - Then define detailed specs with qualified vendors
 - 2016: Tender
 - 2016 2017: Preproduction
 - 2017 2018: Production

Silicon Sensor R&D for CMS Upgrade

BASELINE MODULE DESIGNS

2S Module

2S Module

2S Module - Flexible Hybrid Option

PS Module

Silicon Sensor R&D for CMS Upgrade

DEVELOPMENTS WITH ALTERNATIVE VENDORS

Producers for Silicon Detectors

- Small scale R&D production:
 - Many institutes and companies are able to produce a few 10-100 wafers per year
 - 6 inch is usually available at many sites
 - The sensors differ in a broad spectra of quality and price
- Large scale commercial production:
 - Currently only one company is able to produce a few 1.000 – 10.000 high quality wafers per year
- Possible new producer: Infineon
 - Production on thinned 8 inch wafers could be possible

→ Dual or multi-source strategy would be preferable

0

UR

рнотом

USIN

Silicon Sensor R&D for CMS Upgrade

Production of Sensors at Infineon

- End of 2009: Started intense discussion on technical details
- Beginning of 2011: First milestone
 - Reached a general understanding of the production process
 - HEPHY started design of the masks
 - Infineon started the generation of the detailed production plan
- 24 August 2011: Final mask design finished!
- October 2011: Production start
 - Full production at Infineon was accompanied by HEPHY diploma student
- 29 February 2012: Production finished
- 2 April 2012: Wafers arrive in Vienna (via CERN)
- October 2012: Beam tests and Irradiation
 - Beam tests at the SPS accelerator at CERN
 - Gamma Irradiation at SCK-CEN Mol, Belgium

Layout of Batch 1 and 2

- Large Sensor: STL
- Small Sensor: STS
- Strixel Sensor: SX2
- Irradiation Sensor:
 STI
- CMS halfmoons
 (Test structures)
- Large number of diodes and MOS
- SIMS fields

Main Device Properties

Sensor STL

- 120 µm pitch
- 20 µm strip implant width
- Size: 64 x 102 mm
- 512 strips (4xAPV)

Sensor STS, SX2 and STI

- 80 µm pitch
- 20 µm strip implant width
- STS and SX2:
 - Size: 23 x 50 mm
 - 256 strips (2xAPV)
- STI: 64 strips, 42.4 x 7 mm

										- 888
										100
23 E -										
121										
										- 1111
										5153
										 34648
										- 388
1.1										- 200
1723										
										 31133
199										- 1913
										_ 11
4121										
										- 111
1911 -										
100										
38 L										
100										- 111
										-111
										1.11

Batch 1 Defective Strips (STS Sensor)

- Accumulation of anomalous strips around strip no. 222-248
- all split groups affected

Thomas Bergauer (HEPHY Vienna)

Beam Test at CERN's SPS

- 120 GeV/c hadrons (mostly pions) in H6 area of NA hall
- 4 detector modules build
 - 2 baby sensors
 - 2 strixel sensors
- Readout chips (APV25) same as in the CMS Tracker
- Readout system is a prototype for the Belle II Experiment
- Detector modules were
 - Tested at CERN
 - Gamma irradiated at CNK-CEN Mol
 - Tested again at CERN

1. Results of Beam Test: Sensor Sections

- The bad strip area does not stand out clearly in beam profile and seems to be fully efficient
- For a more detailed analysis the sensor has been divided into two sections:
 - One good section (green)
 - One bad section (red, strip no. 222 238)

Silicon Sensor R&D for CMS Upgrade

1. Results of Beam Test: Different Sections

- The results indicate problems with the strip isolation at the "bad area"
 - Clusters are wider in "bad section"
 - The eta distribution indicates an anomalous charge sharing between the strips

1. Results of Beam Test: Gamma Irradiation

- The modules have been gamma irradiation and tested again
- The gamma irradiation mainly effects the silicon oxide layer on the sensor surface
- Gamma irradiation seems to cure the problem, which fits well to the assumption of accumulated charge inside the silicon oxide

Proposals for 8" Sensors

- Top-down approach driven by tkLayout
 - Long-term prospective for building an optimal tracker
- Compatibility with 6" implies that we do not use 8" area optimal
 - But better suitable for existing module designs
- Now (2013/14) we need a layout which is suitable for
 - Building module prototypes (2S and PS)
 - Evaluate 8" production (n-on-p)
 - P-stop studies

"PS" means "PS-strips" (and not "PS-pixel")

8" Wafer Layout Proposal

- Wafer size: 200 mm
- Clearance zone 5 mm default around fiducial area
 - 3 mm absolute minimum if necessary
- 8" Wafer do not have a flat only a very small notch (not shown)
- Layout not yet taking alignment marks and vendor test structures into account
 - Have to sit on fixed places

Silicon Sensor R&D for CMS Upgrade

Test of Silicon for radiation hardess

HPK CAMPAIGN

CMS Strategy

- Most of the volume of a future Tracker will be equipped with planar silicon sensors
 - We have started a survey of available silicon materials to probe their individual limits
 - One wafer layout has been developed and the various materials are processed with this mask by the same producer, which allows well defined comparisons
 - We investigate the properties of several layout options for strip, strixel and pixel sensors
 - A well defined measurement plan has been worked out and participating institutes have been inter-calibrated to guarantee comparable measurements
 - For the test wafers a producer was chosen, that can provide the large quantity and high quality we need → "HPK campaign"
 - Measurements are complemented by device simulations

HPK Campaign Overview

We investigate 3 processes (on all materials):

- **p-on-n:** p-strips in n-bulk
- **n-on-p**, **p-stop**: n-strips in p-bulk with p-stop isolation
- **n-on-p**, **p-spray**: n-strips in p-bulk with p-spray isolation

Different base (substrate) materials:

- Floatzone (FZ)
- Magnetic Czrochalski (mCZ)
- Epitaxial (EPI)
- Different thicknesses of substrate material ranging from 70 to 320 µm

HPK campaign – Materials

- Initially ordered production of 126 wafers delivered completely
- Part of thin FZ wafers came "deep diffused" showing some features, which makes a comparison with physical MCz difficult
- "Deep diffused" wafers are about 20% cheaper than 200µm thin wafers!
- Additional material ordered later (2nd metal and PTH200

	n-type	p-type (p-stop)	p-type (p-spray)
FZ320	6 / 6	6 / 6	6 / 6
FZ200 deep diff.	6 / 6	6/6	6/6
FZ120 deep diff.	6 / 6	6/6	6/6
MCz200 physical	6 / 6	6/6	6 / 6
Epi100	2 / 6	6/6	6 / 6
Epi70	4 / 0	-	-
Epi50	6 / 6	6/6	6 / 6
FZ200 deep diff. & 2.metal	6 / 6	6/6	6/6
FZ200 physical	0 / 6	0 / 6	0 / 4
FZ120 on carrier	0/6	0 / 6	0 / 4

	physical	physical thickness		ffusion	carrier wafer		
active thickness	320µ	200µ	200µ	120µ	120µ	100µ	50µ
FZ	Х	Х	Х	Х	Х		
MCz		Х					
Epi						Х	Х

Deep diffusion

- Deep diffusion (process)
 - Reduction of active volume of 320µm thick wafers but not of material budget
 - High concentration of dopants is diffused deep into the wafer
 - Smooth change of doping concentration
- Compared to wafer bonding is cheaper

- Deep diffusion doping profile can be introduced into the simulation
- Simulation can be fitted to measurement results
- Excellent agreement between simulated and measured CV curves

Investigation of "deep diffused" material

- Unusual behaviour of thin "deep diffused" material
- Well seen in IV and CV of diodes
- Thin diodes show non-abrupt depletion behaviour
- Volume generated currents are higher than in thick diodes
 - But currents are still very low (<1.5µA/cm³ @ 500V)!

Silicon Sensor R&D for CMS Upgrade

HPK campaign wafer layout

Silicon Sensor R&D for CMS Upgrade

les **Structures and goals** Material characterization and add. annealing studies

- Measure IV, CV, CCE, TCT, DLTS, TSC, photo cond., ...
- Mini sensor I (Baby std)

Diodes

- Material characterization, charge collection
- Measure IV, CV, strip para., CCE, e-TCT
- Mini sensor II (Add Baby) ۲
 - Material characterization using different radiation sources
 - Measure IV, CV, Lorentz angle
- Sensor with integrated PA (Baby PA)
 - Layout study: spare glass PA
 - Measure strip capacitances, CC, signal coupling
- Sensor with short strips and edge read-out (Baby_strixel)
 - Layout study: read-out lines from inner strip to outer edge
 - Measure strip capacitances, CC, signal coupling
- Test structure field (TS)
 - Process qualification
 - Measure many things incl. SIMS, SRP, SEM, ...
- Pixel
 - Real size pixel sensor for CMS ROC footprint
 - Measure IV, efficiency, σ
- Multi-geometry strip (30mm) sensor (MSSD)
 - Layout study: strip width and pitch variations
 - Measure CV, IV, Cint, S/N, σ
- Multi-geometry pixel (1.25mm/2.5mm) sensor (MPix)
 - Layout study: pixel length and pitch variations
 - Measure CV, IV, Cint, $R_{\text{polv}}/R_{\text{PT}}$, S/N, σ

17 institutes currently involved in HPK campaign

Baby_std

- A "standard" mini strip sensor with 256 strips and 80µm pitch
- Evaluation of all electrical parameters
- Measurement of charge collection with beta-source and LHC-like readout system
- Edge-TCT can provide E-field and charge collection vs. thickness profile on sub-set

Multi-SSD

- Contains 12 regions with different strip sensor layouts
- This is a replica of the famous test-structure, which brought us the conclusion that the total strip capacitance is a function of w/p only (demonstrated for 0.2<p/d<0.8 and 0.1<w/p<0.6) [CMS Note 2000/011]

REGION NoPITCH	Ρ	WP	WAL	D	E	L
1-120	120	18	26	60	60	3820
2-240	240	36	44	120	60	7660
5-120	120	24	32	60	60	3820
6-240	240	48	56	120	60	7660
9-120	120	36	44	60	60	3820
10-240	240	72	80	120	60	7660

REGION NoPITCH	Р	WP	WAL	D	E	L
3-80	80	12	20	60	60	2580
4-60	60	9	17	50	50	1940
7-80	80	16	24	60	60	2580
8-60	60	12	20	50	50	1940
11-80	80	24	32	60	60	2580
12-60	60	18	26	50	50	1940

Multi-Pixel

- Contains 12 regions with different pixel/strixel layouts
- Pixel size in the regime of pixellated p_T layers
- Study inter-pixel capacitances and different biasing schemes
- Special PA to read-out with APV25 in beam test

	PIXEL Length	Pitch	bias type	No. of pixels	Pixel size (um)	Lateral P-P gap	
1		80	Poly	32×16	20-1160	60	
2		00	PT	32×16	2021100		
3	1250	100	Poly	32×16	25,1160	75	
4	1250	100	PT	32×16	2321100	75	
5		120	Poly	32×16	20-1160	90	
6		120	PT	32×16	30X1100		
7		00	Poly	32×8	20-2410	60	
8			PT	32×8	2022410	00	
9	2500	100	Poly	32×8	25-2410	75	
10	2000	100	PT	32×8	Z3XZ410	75	
11		120	Poly	32×8	20-2410	90	
12		120	PT	32×8	3072410	50	

Silicon Sensor R&D for CMS Upgrade

Oxygen Content

- Deep diffused material: Higher [O] when active thickness lower
- [O] in p typically larger than n
- 120 dd extremely high!
- New: FTH and dd320n

- [O] FTH lower than MCZ but higher than typical FZ, more like DOFZ
- For reference: Standard FZ: <3x16¹⁶, DOFZ*: 1x10¹⁷

*Diffusion 72h at 1150°C

Irradiation fluences

- Need to understand damage by neutron, charged hadron and mixed particle irradiation
- Fluences chosen for conditions at various radii
- Annealing steps chosen to cover initial short term and long term annealing

Step	1	2	3	4	5	6	7
Temp./° C	60	60	60	60	80	80	80
Time / min	20	20	40	76	15	30	60
∑t@60° C∕min	20	40	80	156*	312	624	1248
$\sum t @20^\circ C/d$	4.5	8.1	15.6	31.8	92.8	243	496

* 156min at 60°C ~ 15min at 80°C

Radius	Protons	Neutrons	Ratio p/n	Total	Material
40cm	2,5	4	0,63	6,5	≥ 200µm
20cm	10	5	2,00	15,0	all
15cm	15	6	2,50	21,0	all
10cm	30	8	3,75	38,0	all
5cm	130	12	10,83	142,0	< 200µm

In 10¹⁴ Neq cm⁻²

Overview of fluences (in10 ¹⁴ N _{eq} cm ⁻²) for different radial positions									
Radius/cm	Protons	Neutrons	total						
40	3	4	7						
20	10	5	15						

Silicon Sensor R&D for CMS Upgrade

Irradiation sequence

- Initial measurements of all parts
- Irradiation with n/p
- Short annealing 10min @ 60°C
- Measurement of devices
- Irradiation with p/n
- Short annealing 10min @ 60°C
- Measurement of devices for several annealing steps

Proton cyclotron, KIT

TRIGA reactor, Ljuljana

n-Irradiation

Volume Current

1 MeV neutrons, $\phi \downarrow eq = 4 \cdot 10 \uparrow 14 cn$

- Volume current scales with fluence:
- Scaling parameter independent of Si material, oxygen concentration
- Scaling parameter agrees with previous measurements
- \rightarrow Current/ fluences understood
- → Independent of material
- → Independent of polarity

Depletion Voltage: 23 GeV p

Irradiated with 23 GeV protons (PS)

Annealing \rightarrow Info about type inversion

Depletion Voltage: 23 MeV p

Different picture compared to GeV irradiation:

Type inversion	dd- FZ	MCZ
N-type	~	~
P-type	-	-

Lower depletion voltage for n-type due to type inversion

Silicon Sensor R&D for CMS Upgrade

23 MeV p after 80min@60°C

Compensation in MCZ

- N_{eff} influenced by interplay of particle type (n-p), proton energy, [O] and annealing
- Compensation of GeV protons and neutrons in [O]-rich material (MCZ)

Compensation for n-type MCZ: Annealing

- After protons only: n-type annealing, no type inversion
- After neutrons only: negative slope →type inversion
- Depletion voltage after mixed irradiation less than the sum for proton and neutron irradiation, strong function of annealing
- Complicated picture →Need to add Hamburg model for neutrons and protons

Silicon Sensor R&D for CMS Upgrade

Charge Collection – n-Type 300µm Strip Sensors

- Charge collection measured with Sr90 at -20°C with 600V and 900V bias on small strip sensors using read-out chips with short int. time:
 - SCT128 for Liverpool/ATLAS
 - Beetle for Karlsruhe/CMS
- Few years ago Liverpool measured huge drop in signal for p-in-n sensors even at 900V
 → concentrate on p-type development within RD50
- New measurements show much higher signal now
 - sensors from different vendor
 - severe drop in signal after long annealing
- From these measurements: 320µm p-in-n strip sensors could still be used up to 7e14n_{eq}/cm² avoiding long annealing

Charge Collection – p-Type 300µm Strip Sensors

- Charge collection measured with Sr90 at -20°C with 600V and 900V bias
- Liverpool (SCT128A) and Karlsruhe (Beetle) results show reasonable agreement
- p-type strip sensors show uniform drop like exponential decay,
 - e.g. for 600V in the range of $F=(1e14-1e16)n_{eq}/cm^2$:

Liverpool: NIM A 636 (2011) S56-S61

Charge Collection – 200µm FZ

- 200µm strip sensors allow to reduce the material budget and keep CC at same level as 320µm at high fluence
- But for p-in-n sensors CMS saw many devices showing large signal and large noise

Noise – Random Ghost Hits

- CMS has observed non-Gaussian noise for irradiated p-in-n sensors for a significant fraction of the phase space (fluence, bias voltage, annealing)
- This results in randomly distributed hits, with no particle passing the sensors
 → Random Ghost Hits (RGH)
- A RGH rate was defined by counting all signals >5σ and dividing by #strips and #events
 - resulting number is an occupancy of RGHs or fakes
 - more than 1% fake occupancy is considered bad

Device Simulation – Electric fields

- T-CAD simulations show higher electric fields at the strip edges for irrad.
 n-in-p sensors than for p-type sensors with same geometry (except p-stop)
 - This would explain why p-in-n sensors are more likely to discharge or break-down locally
- Increasing oxide charge...
 - increases max. electric fields in p-in-n
 - reduces max. electric fields in n-in-p
 - This would explain why RGHs are reduced for neutron irradiation with less ionization

Device Simulation – Geometry Dependence

Electric Field at the Strips, $Qox=1e12cm^{-2}$ Cut at 1.3µm below the Si-SiO2 Surface

- Simulations indicate that large pitch and narrow strip width leads to higher max. electric fields at the strip edges
- This was investigated on a special multi-geometry strip sensor with 12 regions implementing various pitches and w/p ratios

HEPHY Institute of High Energy Physics

Silicon Sensor R&D for CMS Upgrade

Strip isolation

- Before irradiation:
 - p-spray need tuning of conc. to guarantee isolation, but avoid high fields at strip edges
 - p-stop needs a minimum conc., but electric fields not much affected
- After irradiation:
 - Trapping and generation of space charge around strips automatically isolates the strips!
 - Increasing bulk damage for given oxide charge increases Rint!
 - Now, p-stop conc. critical!
 Simulation suggests to avoid very high p-stop concentration

Silicon Sensor R&D for CMS Upgrade

SUMMARY

Summary on HPK Campaign

- HPK Campaign to identify the best material for Phase-2 tracker
 - 126 Wafers
 - FZ, mCZ, EPI and p-on-n, n-on-p with p-stop and p-spray processing technique and different thicknesses
- Conclusions of the HPK campaign
 - n-on-p and p-on-n almost equally suitable (but only because of high O concentration in FZ material)
 - Oxygen concentration important to measure/know
 - Random Ghost Hits in p-on-n due to high field at strip edge
 - Conclusion: N-on-p will be the baseline
 - Cost estimates given by vendors show that mCZ is not cheaper than FZ
 - Most cerntainly will use float zone (FZ) substrate material
 - NIEL Hypothesis not fully applicable in highly irradiation regime (double junction)

Summary on Phase-2 Tracker

- Phase 2 Upgrade in 2020-2022 during LS3
- Completely new tracker based on double-sensor modules
 - Each module will be able to provide input to L1 trigger by measuring curvature of track (derive momentum)
 - 2S and PS module, 2S module design well advanced
 - Digital readout using CBC chip (CBC2 available) and MPA chip
- Work with alternative sensor vendors (Infineon) to have alternatives to HPK
 - Will reduce silicon costs
 - 8-inch wafers will provide even better cost ratios (only if enlarged area is fully used)