Search for exotica at

- Introduction
- A topical review of Exotica @ CMS
- Outlook and Conclusions

Search for exotica at

Introduction

A topical re Exotica @

Outlook an

Federal Ministry of Education and Research

The Compact Muon Solenoid

- ... are a key part of the CMS physics program (and substantial)
- Supersymmetry, ...
- Technicolor, ...
- Extra dimensions, ...
- Extended gauge sector, 4th gen.
- Substructure, Leptoquarks
- Dark matter
- Black holes, unparticles
- (Non-)resonant structures
- Rare decays
- Metastable, long-lived particles
- Already more than 100 BSM physics papers!

- ... are a key part of the CMS physics program (and substantial)
- Supersymmetry, ...
- Technicolor, ...
- Extra dimensions, ...
- Extended gauge sector, 4th gen.
- Substructure, Leptoquarks
- Dark matter
- Black holes, unparticles
- (Non-)resonant structures
- Rare decays
- Metastable, long-lived particles
- ▶ Signature-based ←→ model-inspired
- Already more than 100 BSM physics papers!

© W.Sauber via wikimedia commons

- ... are a key part of the CMS physics program (and substantial)
- Supersymmetry, ...
- Technicolor, ...
- Extra dimensions, ...
- Extended gauge sector, 4th gen.
- Substructure, Leptoquarks
- Dark matter
- Black holes, unparticles
- (Non-)resonant structures
- Rare decays
- Metastable, long-lived particles
- ▶ Signature-based ←→ model-inspired
- Already more than 100 BSM physics papers!

- ... are a key part of the CMS physics program (and substantial)
- Supersymmetry, ...
- Technicolor, ...
- Extra dimensions, ...
- Extended gauge sector, 4th gen.
- Substructure, Leptoquarks
- Dark matter
- Black holes, unparticles
- (Non-)resonant structures
- Rare decays
- Metastable, long-lived particles
- ▶ Signature-based ← model-inspired
- Already more than 100 BSM physics papers!

Summary of Exotica at CMS

Overview

- Monojets
 - Large extra dim., dark matter, ...
- Di-jet resonances (w, w/o b-tag)
 - Many interpretations
- 3-jet resonances (RPV SUSY)
- Di-lepton resonances
- Di-lepton large extra dimensions
- Single lepton + MET
 - W', Universal ED, CI, DM
- W' → tb
- 2nd generation leptoquarks (l+jets)
- Z' → ttbar searches
 - ♦ Semi-leptonic, all-hadronic

- Vector-like T' → tZ, tH, bW
- Vector-like B' → tW, bH, bZ
- Q = 5/3 top partners
- High mass di-boson resonances
 - ♦ W', extra dimensions, ...
- Microscopic black holes
- Jet extinction
 - ♦ Black holes, ...
- Displaced jets
 - ♦ Split/RPV SUSY, hidden valley, ...
- Heavy stable charged particles

Overview

- Monojets
 - Large extra dim., dark matter, ...
- Di-jet resonances (w, w/o b-tag)
 - Many interpretations
- 3-jet resonances (RPV SUSY)
- Di-lepton resonances
- Di-lepton large extra dimensions
- Single lepton + MET
 - ♦ W', Universal ED, CI, DM
- W' → tb
- 2nd generation leptoquarks (l+jets)
- Z' → ttbar searches
 - Semi-leptonic, all-hadronic

- Vector-like T' → tZ, tH, bW
- Vector-like B' → tW, bH, bZ
- ightharpoonup Q = 5/3 top partners
- High mass di-boson resonances
 - ♦ W', extra dimensions, ...
- Microscopic black holes
- Jet extinction
 - Black holes, ...
- Displaced jets
 - Split/RPV SUSY, hidden valley, ...
- Heavy stable charged particles
 - : Next talk
 - : Next-to-next talk

Aside: $B_s \rightarrow \mu\mu$

CMS

- Highly suppressed in standard model (FCNC)
- Very sensitive to new physics in loops
- Finally observed by CMS and LHCb
- Result compatible with SM expectation

$$\mathcal{B}\left(B_s^0 \to \mu^+ \mu^-\right) = (2.9 \pm 0.7) \times 10^{-9}$$

Aside: $B_s \rightarrow \mu\mu$

- Highly suppressed in standard model (FCNC)
- Very sensitive to new physics in loops
- Finally observed by CMS and LHCb
- Result compatible with SM expectation

$$\mathcal{B}\left(B_s^0 \to \mu^+ \mu^-\right) = (2.9 \pm 0.7) \times 10^{-9}$$

Versatile search channel for many "invisible" new particles

- Highly sensitive to extra dimensions, unparticles, dark matter, ...
- Main knobs: jet p_{T} , missing E_{T}
 - Allow second jet (not back-to-back)

0000000000

Large extra dimensions: Fundamental Planck scale $M_D > 3... 5$ TeV (up to 5.7 TeV @ NLO)

(Stable, scalar) unparticles

- Pair production of dark matter characterized by a contact interaction effective theory
- Limits translated to DM-nucleon cross sections in order to compare with direct detection experiments

Many operators, validity range of effective theory, new models, ...

Di-jet searches

Di-jet mass highly sensitive to many new physics models including excited quarks and contact interactions, axigluons, W', Z', ...

Present results in a way to allow straightforward application to new models

Di-jet searches

Di-jet mass highly sensitive to many new physics models including excited quarks and contact interactions, axigluons, W', Z', ...

Model	Final State	Obs. Mass Excl.	Exp. Mass Excl.
		[TeV]	[TeV]
String Resonance (S)	qg	[1.20,5.08]	[1.20,5.00]
Excited Quark (q*)	qg	[1.20,3.50]	[1.20,3.75]
E ₆ Diquark (D)	qq	[1.20,4.75]	[1.20,4.50]
Axigluon (A)/Coloron (C)	q̄q	[1.20,3.60] + [3.90,4.08]	[1.20,3.87]
Color Octet Scalar (s8)	gg	[1.20,2.79]	[1.20,2.74]
W' Boson (W')	q̄q	[1.20,2.29]	[1.20,2.28]
Z' Boson (Z')	q̄q	[1.20,1.68]	[1.20,1.87]
RS Graviton (G)	q̄q+gg	[1.20,1.58]	[1.20,1.43]

Di-jet mass = 5.15 TeV

Present results in a way to allow straightforward application to new models

Di-jet searches (bb, bg)

Pair-produced 3-jet resonances

- Benchmark: pair-produced gluinos decaying to 3 jets in RPV SUSY
- Combine 6 highest p_⊤ jets into 20 unique triplet combinations
- To suppress wrong combinations and QCD, only accept triplets that satisfy
- Look for bump in falling spectrum

$$M_{jjj} < \sum_{i=1}^{3} |p_{\mathrm{T}}|_i - \Delta$$

Pair-produced 3-jet resonances

In addition to inclusive search, apply b-tagging for enhanced sensitivity to decays with b quarks (gluino \rightarrow udb, csb)

- Inclusive search: exclude RPV decaying
 - gluinos with M < 650 GeV
- b-tagged: exclude 200 < M < 835 GeV</p>

Di-lepton resonances

New heavy gauge bosons → narrow ee,µµ resonances in the TeV region

 \rightarrow Upper limit on the ratio of Z' (or G_{KK} or ...) to SM Z production

95% CL mass limits:

Z'SSM	Z' Psi
2.96 TeV	2.60 TeV

Di-lepton resonances

New heavy gauge bosons → narrow ee,µµ resonances in the TeV region

95% CL mass limits:

Z'SSM	Z' Psi
2.96 TeV	2.60 TeV

Large extra dimensions (ADD) in ee, µµ

- Virtual graviton production modifies Drell-Yan spectrum
- Signal region: M_{II} > 1.8 TeV

CMS dielectron

Combined:

19.6

20.6+19.6

4.62

4.76

4.64

4.77

3.27

3.37

3.28

3.37

3.90

4.01

Large extra dimensions (ADD) in ee, µµ

- UV cut-off parameter M_s, not directly comparable to fundamental Planck scale M_D
- Complementary to mono-jets and mono-photons
- Large part of interesting parameter space excluded

M _s (ADD) at LO	Lumi.	δ=3	δ=3	δ=6	δ=6	Λ _T (GRW)
95% CL limits	[fb ⁻¹]	Exp.	Obs.	Exp.	Obs.	[TeV]
CMS dimuon	20.6	4.34	4.33	3.07	3.06	3.64
CMS dielectron	19.6	4.62	4.64	3.27	3.28	3.90
Combined:	20.6+19.6	4.76	4.77	3.37	3.37	4.01

Single lepton + MET (e ν , $\mu\nu$)

- Many models, e.g.:
 - sequential SM with and w/o interference, no decays to WZ
 - Universal extra dimensions
 - Four fermion contact interactions
- In events with isolated e or μ plus MET, use binned likelihood in M_{τ}

$$M_{\rm T} = \sqrt{2 \cdot p_{\rm T}^{\ell} \cdot E_{\rm T}^{\rm miss} \cdot (1 - \cos \Delta \phi_{\ell,\nu})}$$

Single lepton + MET (ev, $\mu\nu$)

Single lepton + MET (e ν , $\mu\nu$)

- Limits in SSM:
 - M > 3.35 TeV (no interference)
 - M > 3.10 TeV / 3.60 TeV (destr. / constr.)
- At high masses, W' mostly off-peak
- Limits on HNC CI:
 - Λ > 13.0 TeV (e) / 10.9 TeV (μ)

Model	Channel	Observed limit	Expected limit
SSM	е	$m_{W^\prime} < 3.20 TeV$	$m_{W^\prime} < 3.25 \text{TeV}$
SSM	μ	$m_{W^\prime} < 3.15 TeV$	$m_{W^\prime} < 3.10 \text{TeV}$
SSM	combined	$m_{W^\prime} < 3.35 \text{TeV}$	$m_{W^\prime} < 3.40 \text{TeV}$
SSMO	е	$m_{W'} < 3.60 \text{TeV}$	$m_{W'} < 3.60 \text{TeV}$
SSMO	μ	$m_{W^\prime} < 3.05 \text{TeV}$	$m_{W^\prime} < 3.30 \text{TeV}$
SSMO	combined	$m_{W^\prime} < 3.60 TeV$	$m_{W^\prime} < 3.60 \text{TeV}$
SSMS	е	$m_{W^\prime} < 3.00 TeV$	$m_{W^\prime} < 3.10 \text{TeV}$
SSMS	μ	$m_{W^\prime} < 2.80 \text{TeV}$	$m_{W^\prime} < 2.90 \text{TeV}$
SSMS	combined	$m_{W^\prime} < 3.10 \text{TeV}$	$m_{W^\prime} < 3.20 \text{TeV}$
W_{KK}^2	μ =0.05 TeV, combined	$m_{W_{KK}^2} < 1.7 \text{TeV}$	$m_{W_{KK}^2} < 1.7 \text{TeV}$
W_{KK}^2	μ =10.0 TeV, combined	$m_{W_{KK}^2} < 3.7 \text{TeV}$	$m_{W_{KK}^2} < 3.6 \text{TeV}$
HNC CI	е	$\Lambda < 13.0 \text{ TeV}$	$\Lambda < 13.3 \text{ TeV}$
HNC CI	μ	$\Lambda < 10.9 \text{ TeV}$	$\Lambda < 12.2~\text{TeV}$

Single lepton + MET (ev, $\mu\nu$)

- Dark matter production: W recoiling against pair-produced dark matter
- Reinterpretation of leptonic W' search
- Consider vector and axial-vector like couplings
- Possible interference effects
- First limits on "monolepton" DM

W' →tb

- Searches in W' → quark final states important to complement leptonic searches, in case decays into leptons are suppressed
 - Also, can reconstruct mass (modulo ambiguities)
- Enhanced couplings to 3rd generation possible (and easier!)
- Signature is a high p_T isolated lepton, large MET, and 2 b-jets (one b-tag required)

- Exclude M(W') < 2.03 TeV at 95% CL for W_R and W_L w/o interference
- Limits for arbitrary combinations of LH or RH couplings

LQ2 ($\mu\nu$ +jj, $\mu\mu$ +jj)

- Carrying both lepton and baryon numbers, coupling to lepton-quark pair
- Fractional charge, three generations
- Here: pair production of scalar LQ, coupling to one generation only
- **Parameters:** LQ mass, BF to lq(β)
- Optimize cuts for each hypothetical M(LQ)
 - S_{τ} ; $M(\mu\mu)$, $M_{\tau}(\mu\nu)$; $M(\mu,jet)$
 - $S_T = \text{scalar } p_T \text{ sum of } \mu, \mu (\nu), j1, j2$

LQ2 ($\mu\nu$ +jj, $\mu\mu$ +jj)

M > 1070 (785) GeV for B(LQ \rightarrow µq) = 1 (0.5)

$Z' \rightarrow t\bar{t} \rightarrow e/\mu + jets$

B2G-12-006 B2G-13-001

- 1 lepton + MET + >=2 jets
- 0 or 1 b-tag
- **Define** χ^2 for top hypotheses
 - ♦ Separately optimized for low mass (M_{tt̄} <~ 1 TeV, non-boosted) and high mass (boosted) regime</p>

Page 35

► Topcolor Z' limits with 95% CL:

♦ Narrow: M(Z') > 2.1 TeV

♦ Wide: M(Z') > 2.7 TeV

Randall-Sundrum model:

M(KK gluon) > 2.5 TeV

Page 36

- Boosted top- and W-tagging
- ► Topcolor Z' limits with 95% CL:
 - ♦ Narrow: M(Z') > 1.7 TeV
 - ♦ Wide: M(Z') > 2.35 TeV
- Randall-Sundrum model:
 - ♦ M(KK gluon) > 1.8 TeV

Combination

Vector-like T' → tZ/tH/bW

- Combined information from single lepton, SS and OS di-lepton, tri-lepton
- Bin by W-tags, N(jets), N(b-jets), H_T, MET, lepton p_T, 3rd / 4th jet p_T
 - OS targeting tZtZ: on-Z, >=5 jets, >=2 b-jets, $H_{_{\rm T}}$ > 500 GeV, $S_{_{\rm T}}$ > 1000 GeV
 - OS targeting bWbW: off-Z, 2-3 jets, $H_T > 300 \text{ GeV}$, $S_T > 900 \text{ GeV}$
 - ♦ SS targeting tZ or tH: >=3 jets, H_{τ} > 500 GeV, S_{τ} > 700 GeV, lepton flavor categs.
 - Tri-lepton targeting tZ or tH: >=3 jets, H_T > 500 GeV, S_T > 700 GeV, lepton flavor categories

- Combine all channels to get limits
- As function of branching fractions, exclude masses between 687 and 782 GeV

Vector-like b' →tW/bH/bZ (lepton+jets) B2G-12-019

- One electron/muon, MET, >=4 jets including 1 with b-tag
- Classify events based on "V-tags" = number of jets consistent with boosted W, Z, or H boson
- Search for excess in S_{τ} = scalar sum of jet p_{τ} , lepton p_{τ} , MET
 - Fit to background and signal templates in different categories

Vector-like b' →tW/bH/bZ (lepton+jets) B2G-12-019

- As a function of $b' \rightarrow tW$, bH, bZ branching fractions, exclude up to M(b') < 732 GeV
- Highest sensitivity for b' → tW

Vector-like b' → bZ (di-lepton + jets)

B2G-12-021

- Consider decay to bZ and tW
- Reconstruct resonance of e^+e^- and $\mu^+\mu^-$ pairs compatible with Z, plus b-jet
- Assuming B(b' → bZ) = 100%, exclude M(b') < 700 GeV</p>
- ▶ ... plus limits on $B(b' \rightarrow bZ)$ vs. M(b')

$\mathsf{T}_{5/3} \to \mathsf{t} \; \mathsf{W}$

- Composite Higgs or models with extra dimensions
- Same-sign di-leptons (e or μ)
- Allow for boosted top and W
- ► 5 or more constituents (top=3, W=2) in addition to the two leptons
- **H**_T > 900 GeV → data: 11 events; bgrd: 6.6 ± 2.0

High mass di-boson resonance searches

$$W'/\rho_{TC} \longrightarrow WZ \longrightarrow 3I + MET$$

$$\begin{array}{c} \text{lepton} \\ + \text{ MET} \end{array} \hspace{-0.5cm} \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\} \begin{array}{c} \text{boosted} \\ \text{Z} \rightarrow \text{II} \end{array}$$

EXO-12-021:

$$G_{bulk} \longrightarrow WW \longrightarrow I + jet + MET$$

EXO-12-022:

$$G_{\text{bulk}} \longrightarrow ZZ \longrightarrow 2I + 2jets$$

boosted
$$Z \rightarrow II$$
 boosted $Z \rightarrow II$

EXO-12-024:

$$G_{RS} \longrightarrow WW/ZZ, W' \longrightarrow WZ$$

W' / $\rho_{TC} \rightarrow$ WZ \rightarrow 3l + MET

- ► Use M_{wz} (taking MET into account) and $\sum p_{T}(l)$
- Modified ID and isolation for muons (from boosted Z)
- W' → WZ excluded for 0.17 < M < 1.45 TeV</p>

WW / ZZ / WZ in di-jets

- ► G_{RS} → WW, WZ and W' → WZ in di-jets, with W and Z → jj
 - Jets from W/Z decays boosted and merged into single jets
 - Each jet required to pass "W/Z-tagger": pruned jet mass, N-subjettiness

Exclude

- $G_{RS}(k/M_{PL}=0.1) \rightarrow WW(ZZ)$ for 1.0 < M < 1.59 (1.17) TeV
- ♦ W' → WZ

- for 1.0 < M < 1.73 TeV
- for 1.0 < M < 3.23 (3.00) TeV

Black holes

"Helden" (Heroes) last week on German television (RTL)

Arnd Meyer (RWTH Aachen) October 11, 2013 Page 46

Microscopic black holes

© Sabine Hossenfelder

- Would decay to multiple objects: jets, leptons, photons, ...
- ▶ Distribution of interest: scalar p_{T} sum = S_{T}
- For backgrounds, extrapolate shape from low $(N=2, 1.8 < S_{\tau} < 2.8 \text{ TeV})$ to high multiplicity
 - Normalization from low S_{T} , 1.9 < S_{T} < 2.3 TeV

Microscopic black holes

EXO-12-009

Derive model-dependent limits, as well as limits on excess S_T for different object multiplicities

13 jets, $S_{T} = 4.5 \text{ TeV}$

EXO-12-051

Jet extinction

Inclusive jet p_ [GeV]

- Even if black holes (or similar phenomena) are produced, we may miss them (trigger, no decay to our "objects", not yet significant, ...)
- However, above production threshold, SM processes are highly suppressed
 - Good place to check are inclusive jets
 - PDF and jet energy scale uncertainty are important

Limit on the extinction energy scale (fundamental Planck scale) M > 3.3 TeV

Displaced jets

- Massive long-lived particles decaying to displaced jets can occur in many models: split SUSY, RPV SUSY, hidden valley models etc.
- ▶ Benchmark here is a heavy scalar: $gg \rightarrow H^0 \rightarrow X^0X^0 \rightarrow qq qq$
 - ♦ Mean decay length of X⁰: 3... 300cm
- Search for di-jets from a common, displaced vertex
- Background suppression based on vertex track multiplicity, fraction of tracks with positive d0, likelihood discriminant

2 candidate events, compatible with background expectation

Displaced jets

- Massive long-lived particles decaying to displaced jets can occur in many models: split SUSY, RPV SUSY, hidden valley models etc.
- ▶ Benchmark here is a heavy scalar: $gg \rightarrow H^0 \rightarrow X^0X^0 \rightarrow qq qq$
 - ♦ Mean decay length of X⁰: 3... 300cm
- Search for di-jets from a common, displaced vertex
- Background suppression based on vertex track multiplicity, fraction of tracks with positive d0, likelihood discriminant

Heavy stable charged particles

- Comprehensive analysis using time-of-flight (muon system) and/or dE/dx (tracker)
 - Lifetime > 1 ns, mass > 100 GeV
- Make use of
 - ightharpoonup Track p_{τ} : inner tracker
 - Muon $1/\beta$: muon system
 - Track I_{as} : dE/dx MIP incompatibility

HSCP neutral in tracker - Muon-only

Heavy stable charged particles

EXO-12-026

- Results for long-lived gluinos, scalar top quarks, scalar tau leptons, fractionally/multiply charged leptons
- Mass limits up to > 1300 GeV (gluinos)

Outlook

- Nun 2 from 2015 to 2017: \sqrt{s} = 13 14 TeV, $\int L \, dt \sim 40 45 \, fb^{-1}/a$
- Longterm HL-LHC from ~2023, $\int L dt \sim 300 fb^{-1}/a$, 3000 fb⁻¹ total, ~ 140 PU
- Example: vector-like T' → tZ, tH, bW (as B2G-12-015)

5σ discovery reach up to M(T') of 1500 GeV (compared to ~700 GeV exclusion @8 TeV)

ECFA workshop last week:

https://indico.cern.ch/conferenceDisplay.py?confld=252045

Conclusions

- No stone left unturned in BSM searches at the LHC and CMS
- While there's an overwhelming output of results, many signatures are not yet fully exploited
 - New physics may still be hiding in the data already collected
 - Important guidance from the "new boson"

Unfortunately no compelling evidence for new physics

But many results exploring new territory

- Many publications with full 2012 data set close to publication
- Preparing for next run in 2015
- This and more at

https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsEXO and PhysicsResultsB2G

Page 55

Backup

Summary

