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Plan of lectures

Lecture 1:

-Entanglement entropy (definitions and basic properties)
- EE and Renyi entropy (REE): methods of computations in free
QFT's (spectral geometry and etc)

| ecture 2:

-Holographic EE (HEE)

- motivations for HEE

- HEE: how it works

- HEE and conformal anomalies

| ecture 3:

- Bekenstein-Hawking entropy of black holes
- Entanglement in Emergent gravity
- Entropic gravity



entanglement has to do with quantum gravity:

e possible source of the entropy of a black hole (states inside and outside
the horizon);

e d=4 supersymmetric BH’s are equivalent to 2, 3,... qubit systems

e entanglement entropy allows a holographic interpretation for CFT’s with
AdS duals



Toward a holographic description of
Entanglement Entropy in CFT’s



‘Holography in a nutshell’

[Jgd®*x(R+2A)+b.t

gravity,D+1
16 GD+1

| =F (T)/T

gravity,D+1
F,(T)—free energy of a CFT
3l 1

FDZZ(T)NCTZL, CZE, A~I—2

D =4: Type IIB string theory on AdS; x S,
correpondsto N=4 SU(N)SYM :

O~ ~ Oerings | ~ 9y N, N is a5-form flux on S



Holographic Formula for Entanglement
Entropy (n=1)

< > Ryu and Takayanagi,

hep-th/0603001, 0605073

Ade .1 (bulk space)

é minimal (least area)
surface in the bulk

4d space-time manifold (asymptotic
boundary of AdS)

B separating surface

”~

A IS measuLed in terms of the

- 4G(d+1) area of B

entropy of entanglement S

G (d+1) Is the gravity coupling in AdS



The holographic formula at work



strong subadditivity: Sy = S S,

S;=Ag, S =A
Sl+82:Aad+Abc:Aaf +Afd+Abf +Afc:
(Aaf +A\3f)+(Afd +Afc)2 Aab+Adc zslu2+slm2



entanglement in 2D CFT

L, isthe length of 21

S =Eln(—sm &j
3

ra L

ground state entanglement for a
system on a circle

c —Is a central charge



example in d=2:

2 12 2 2 N NN 2
ds® =1 (d,O cosh” pdt” +sinh pd(”) CFT on acircle

| - AdS radius
2zl 2 2

z, > 3 ds“ e =05 ‘p:po
A : : T .

cosh — =1+ 2sinh’ Jou sin’ (—Llj A is the length of the
| L geodesic in AdS

el — L - UV cutoff

the entropy for a ground state

d
A C (7 -holographic formula reproduces
S ——=—In(e"0 sm(—l'1
entanglement

2G, - central charge in d=2 CFT



a CFT on acircle at a finite temperature
and BTZ black hole

Euclidean BTZ black hole




The holographic formula at work: higher
dimensions

__A(B)

S = 4GI§ID+1)

A(B) — volume of B;

Consider the entanglement entropy for N=4 super Yang-Mills in

d=4

AdS,



a simple example:
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entanglement of a strip

2
ds; = I—z(dz2 +ds;)
Z

A~—A A —is IR cutoff
a.2
A 3 2

s= AP AN
4G, a‘G, a
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the Plateau Problem
(Joseph Plateau, 1801-1883)

It is a problem of finding a least area surface (minimal surface)
for a given boundary

soap films:
P K = h( P; — pz) - equilibrium equation

K -the mean curvature

’]_l - surface tension

pl — p2 -pressure difference across the film



the Plateau Problem

simple surfaces

catenoid is a three-dimensional shape made by rotating
a catenary curve (discovered by L.Euler in 1744)

helicoid is a ruled surface, meaning that it is a trace of a line

The structure of part of a DNA is double helix


http://en.wikipedia.org/wiki/Image:DNA_Overview.png
http://en.wikipedia.org/wiki/Dimension
http://en.wikipedia.org/wiki/Shape
http://en.wikipedia.org/wiki/Catenary
http://en.wikipedia.org/wiki/Curve
http://en.wikipedia.org/wiki/Ruled_surface

the Plateau Problem

other embedded surfaces (without self intersections)

Costa’s surface (1982)



the Plateau Problem

there are no unique solutions in general (especially
for non-trivial boundaries!)




Asymptotics at AdS

~

B — is a holographic surface in the bulk;

8[5) — belongs to conformal class of B;
M — asymptotically AdS solution to:

1. 3
MN_ERgMN_I—ZgMN =0

R
ds® = G XM dx™ = 2% (dz° + g, (2, X)dx“dx"),

Fefferman-Graham (FG) expansion ind = 4

2
Z 1
gﬂV(Z’X):g’UV(X)_Z(Rluv_6g,uij+...



FG expansion for the area of a minimal surface

q

RN
P 11
Z—const ag v

Let B — be a minimal codimension 2 hypersurface in M, (6B conformal to B)

one needs to find an analog of FG expansion for the metric on B

2
2,5 2| dz
ds<(B) = z £2+aab(z,y)dyadyb]

cos” @



FG expansion (continued)

Z
tiltangle: @ = > K+..., Kk —extrinsic curvature of B

X“=x"(z,y), m+#t, 7T=const —embedding equations of B
X* =x*(y), Z = const —embedding equations of B
X“(Z,y)=x(y) + X (Y)Z + Xﬂ(z)(Y)Z2 T

K
X*(z,Vy) = x“(y) - 0“2 +... |lu+r,
(z,y) = x*(y) 2d-2) " H*T

p* =zp”, k, —x”x 0Py

yva

2
aab(z,y):aab(y)—%(kkab+Rab—%aaij+..., R, =R, XX}



Holographic entanglement entropy

1

volume of B = A(B) =7A(B)+%(Fa +F+F)InE ..
&

E
Z = & — position of the boundary (a UV cutoff in CFT)

A(B) NZA? 1.2
S(B)=——~ ~ AB)+=N°(F, +F +F)InuA+..
B)=a ~ar MBI N (R AR 4RI

2
use AdS /CFT dictionary: L = 2N o e=1/A

G «

one reproduces correctly the structutre of the leading divergences and exact value

of the logarithmic part of the entropy



‘derivation’ of holographic entanglement entropy:

D.F. JHEP 0609 (2006) 018, e-Print: hep-th/0606184

an attempt to find more arguments

Why ‘derivation’ of Ryu-Takayanagi formula is important?

- practical issues like its modifications by quantum corrections and etc;
- fundamental issues like understanding entanglement entropy
In quantum gravity



the idea of origin of the holographic formula

ZCFT — ZAdS

Z,s (M) = J- [Dgle 191, _partition function for Renyi entropy of ordrer n

InZ,,.(M_)=-W(n)-action at a stationary point, the holographic entropy is

S5 (1) = (I, (M) 1IN Z,45 (M, 1)) = —— (W () ~nW (1)

taking a naive limit (n — 1) one has (assuming bulk spaces have conical singularities)

1 1 N
WM 1= I[M . 1=- R./ad?"™x+ n—1)A[B],
M= 1M, ] == [T i (1-DAB]

1 .
A[B] — SCFT

Sps(N—1) =

d+1

saddle point approximation requires A[ B] to be a minimal hypersurface!



problems with these arguments:

1. The derivation does not reproduce the entanglement Renyi entropy (M.
Headrick, Phys. Rev. D82 (2010) 126010, arXiv: 1006.0047[hep-th]);

2. Bulk manifolds with conical singularities cannot be stationary
configurations of the AdS patrtition function (M. Headrick,...);

3. The behavior of string theory on singular manifolds is not known;
4. Path integral integral representation of the Renyi entropy for non-integer

index (n -> 1) requires certain conditions which are not always satisfied
(H.Cassini, M.Huerta, arXiv: 1203.4007[hep-th));



We try to understand better the origin of RT
formula by studying holographic entanglement
Renyi entropy (ERE)



Lecture I:

e in general, p“ cannot be represented as an analogous evolution operator
(for non-integer «),
e there may not exist a geometrical construction of a

background manifold with conical singularities which correspondsto TT ,(3“

e modular Hamiltonian is a non-local operator



we do not assume path integral representation for non-integer «,

or corresponding background geometries

we use the following method: do computations for integer « and
consider an analytical continuation (see, e.g. S.N. Solodukhin and

D. Nesterov, arXiv:1007.1246, NP B842 (2011) 141)

holographic representation of ERE may exist for integer indexes since
ERE is represented in terms of partition functions and there is no problem
with path integral representation of the reduced density matrix

InZ(n,T)—nInZ(T)

SW(T) = .
—N




We use a bottom-up approach to holographic ERE :
by trying reconstruct bulk quantities from boundary ones

conditions:
-holographic ERE is a functional set on a minimal surface;
-bulk geometry where the minimal surface is lying

does not depend on the Renyi index (at least locally) — same
property as for the boundary geometry;



Holographic Renyi Entropy (a suggestion)

SV(B) = 1 (7)AB) + 27(()F, + €1 )F. +5(7,)F,)) +

N

A(B) —volume of B; B = B;

Fa, FC, Fb — are some local (bulk) invariant functionals set on B:

f(y,).a(r,),C(y.), 6(7/n) — some coefficient functions;

to reproduce Ryu-Takayanagi formula for entanglement entropy

1
4GP

f()=1 41)=¢@) =b()=0

S~ — A(B)



~ ~ ~

F., F., |, —arefixed by conformal invariance (should not depend on

the coupling)

~ ~ ~

F—>F,. F—>F, K —->FK,

C C

1 2 1 , -
Fa__ﬂiﬁd xR(B) FC—EQ\Fd xC, . nnn'n?,

F, = % £ \Fdzx(%Tr(ki)Tr(ki) ~Tr(k ki)j |

~ ~

the strategy is to fix |fa, F., F, inthe limit of weak couplings

f(y,),a(y.),C(y.), 6(7/n) — may depend on the coupling, extra

Information is required



Asymptotics at AdS

2Ry (2 MMM mY = -2+ 2°C (y) +...,

2
R, (z,y) =6+ 22 [c,m +%—Tr(k2)]+

K, K" =_7 (k—z—Tr(k )j
MN o 3

Ry vy — Riemann tensor of M, & — metric induced on B,

|, M — normal vectors of B,

| —is time-like, (I-m) =0, K,,, —extrinsic curvature tensor of B for m"



Asymptotics at AdS

If we put:

F, =£I\Ed3y {IQKLMNIKmLIMmN +£}
T8

|2
~ 1 —
Ry = ——— [VEd®y Ky KM
27T >
it follows that:

E =F_IInZ+..
’ ’ Z

no other invariants which yield Weyl invariant structures appear:

F~€, IQKL — are constant (gravity eqgs.)

~

the 3d functional, Ry, is not independent (Gauss-Codazzi eq.)



derivation of holographic ERE: same approach

ZCFT — ZAdS

Z,s (M )= I [Dgle !9 _partition function for

M, :0M, =M,

Renyi entropy of ordrer n

WM, ]-?

guantum effective action is well defined on manifolds with conical
singularities, classical action is not, unless it is linear in curvature;

local part of quantum action is a polynomial in index n



bulk gravity action on singular backgrounds:

W[M  ]is an effective (not classical) action,

WM, 1= I[M,]
contribution of conical singularities in the effective action at N > 1 has

a "non-classical™ form (experience with one-loop computations)

1 ~
WM 1=-— - _Rygd®*x+(n-1)S(n,B),
M\J=~T6mG. Ji RN (N—-1)S(n, B)

S(n, B) = A(B),

S s () = —— (W () ~nW (1) =S n, B);

S < (N) coincides with ERE if S(n, B) is a holographic ERE



more on variation procedure:

strictly speaking for the holographic Renyi entropy one should

7~

choose a surface B, which extremizes the functional S (n, B)
6S(n,B)=0

B,, is not minimal, but one expects that

~

B, = B + correction

S(n, I§n) =S(n,B) + (correction)2

Thus, ERE may be reproduced by some holographic arguments
No problem with the limit n — 1!



singular manifolds in semiclassical approximation of holographic
partition function:

boundary conditions imply two relevant sets of manifolds in the bulk

L pgs (M) = j [Dg]e‘W[g’”] + J [Dg]e—l[g]

M,:0M, =M, M,:oM, =M,
singular regular

since W[g,n] = I[g] the 2 sets are separated

(in the Einstein gravity two sets can be joined since the Einstein action
Is well-defined in the presence of conical singularities);

therefore, one should look for the saddle point approximation insisde

a class of singular manifolds, then a singular manifold should be an extremum

without matter sources

It is an open question if regular manifolds in the bulk with singular b.c.

may be relevant as well



To summarize:

There is a ‘scenario’ for a holographic formula of entanglement Renyi entropy
which allows “n -> 1" limit and yields holographic entanglement entropy



thank you for attention



