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Lecture 1:  Entanglement entropy: definitions and computations 

 

Lecture 2:  Holographic entanglement entropy 

 

Lecture 3: Entanglement entropy and emergent gravity 

 

- Bekenstein-Hawking entropy of black holes in induced gravity 

- Entanglement in Emergent gravity 

- Entropy of wormholes 

- Entanglement entropy in entropic gravity 

 

 

Plan of lectures 
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A. Sakharov’s suggestion (1968): 

 

the Einstein theory can be induced at one-loop  

 

 

 

 

 

 

 

Gravitons = collective excitations of underlying degrees of 

freedom 

analogy:  phonons in solid state physics 

                       -   Young’s modulus 
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constraints:

is a Noether charge associated to non-minimal 
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BH entropy in induced gravity (Frolov, Fursaev, Zelnikov): 

 

 

 

 

 

 

 

 



 

                                    String theory: 

 

 

 

 

 

 

 

    “Tree-level” diagram                       “one-loop” diagram   

      (closed strings)                                (open strings)  

                                                            “Sakharov’s picture”              

 

 

   low-energy limit (10D (super)gravity, …) 

 



Holographic formula enables one to compute entanglement entropy 

in strongly correlated systems with the help of classical  

methods (the Plateau problem) 

  

What about entanglement in quantum 

gravity? 



●  S(B) is a macroscopical quantity (like thermodynamical entropy); 

 

● S(B)  can be computed without knowledge of a microscopical 

content of the theory (for an ordinary quantum system it can’t) 

 

● the definition of the entropy is possible at least for a certain type of  

boundary conditions 

the hypothesis 

Can one define an entanglement entropy, S(B),  

of fundamental degrees of freedom spatially separated by a surface B? 

 

How can the fluctuations of the geometry be taken into account? 

 

 



Suggestion (DF, 06,07): EE in quantum gravity 

between degrees of freedom separated by  

a surface B is 

 

conditions: 

   

● static space-times 

 

 

 

 

B is a least area minimal hypersurface  

in a constant-time slice 
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the system is determined by  

a set of boundary conditions; 

subsets, “1” and “2” , in the bulk 

are specified by the division of the 

boundary 



The shape of  the separating surface is  

formed under fluctuations of the geometry; 

 

As a result the surface is minimal, i.e. has a least area 

 
Details: D.V. Fursaev, Phys. Rev. D77 (2008) 124002,  

e-Print: arXiv:0711.1221 [hep-th] 

 



●  ‘Proof’ of this statement is equivalent to argument for  

Ryu-Takayanagi formula (see lecture 2); 

 

but quantum gravity ‘lives’ in 4D and allows a holographic  

description 

 

● it is important that this suggestion satisfies the strong  

subadditivity condition (the proof is as in case of RT formula) 

 

 



Some consequences 



If the entanglement entropy in QG is a  

macroscopic quantity, does it 

allows a thermodynamic interpretation? 

 

 



Wormhole is a shortcut inside a universe 

or a tunnel between two universes 
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- pressure along the tunnel of WH 

1st example of transversable WH is 

described by Morris and Thorne 

the null energy condition is violated 

equation of state 



Entropy of a wormhole 
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-minimal surface on the  

Einstein-Rosen bridge 

- minimal surface in WH throat 

Entanglement of states between two universes is determined by the 

area of a minimal surface at WH throat (“WH mouth”) 

entropy of a wormhole 

BH entropy =  

entanglement en. 

(see also Hayward, 

Martin-Moruno, Gonzalez-Diaz) 



variational formula for a wormhole 
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- position of the WH mouth 

- a “mass” of  a WH  

                              

-  an identity where: 

-  is a parameter 



- stress-energy tensor of the matter on the mouth 

one can put: 
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a “work term” 

-an analog of the 1st law  

(in the Hayward form) 

- a “surface gravity” 



Dynamics of  non-static spherically symmetric wormholes: 

 

S. Hayward  0903.5438 [gr-qc]; 

 

P. Martin-Moruno and P. Gonzalez-Diaz  0904.0099 [gr-qc] 

These formulae can be extended to non-static cases, WH mouth 

being a temporal trapping horizon (a marginal sphere) 
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-1st law for a charged black hole  

(a non-standard form) 

- Misner-Sharp energy 

application to a charged black hole 

- the surface gravity 



analogous conclusion based on variational formulae: 

S. Hayward,   

 

P. Martin-Moruno and P. Gonzalez-Diaz 

reasonings based on the universality of the variational formulae 

 (the “1st law”) for black holes and wormholes suggest that 

 

 

wormholes are characterized by an entropy  

 

WH entropy measures entanglement of quantum states  

in the univereses connected by the WH tunnel 

                                

 

 



simple variational formulae  
(weak field approximation) 
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Entropic origin of gravity (E. Verlinde) 

  

number of degrees of freedom on the screen on the area

2d postulate:    - change of the entropy under the movement 

of a test particle toward the screen;

3d postulate:  the energy
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 takes an 'equipartition' form on the screen

(T. Padmanabhan)

a local temperature on the screen
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Consider a massive source and a holographic screen around it; 

 

1st  postulate the screen is equipotential surface which carries certain entropy:   

E.Verlinde 

arXiv:1001.0785 [hep-th] 



Consequences 

  

 

gravity is an emergent phenomenon; 

the force of gravity has an entropic origin 

direction of the force – gradients of the entropy  

 

2

use an analog of the 1st law   

a work done by the system,  

force acting on the test particle;

acceleration  of the particle

 - the Newton law

 - 

 - 

T S W

W Fl

F mw

w

mMG
F mw m

r







 



   



aim for the rest of 3d lecture 

to study simplest dynamics of a minimal surface; 

 

to look for its thermodynamic analogy; 

 

to relate this analysis to a hypothesis about an entropic  

origin of gravity (as suggested by E.Verlinde) 

 

 

 

 

 

see D.V. Fursaev,  arXiv:1006.2623 [hep-th]   
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Minimal surfaces may play 

a role of holographic screens 

 

2-component ‘screen’ around  

a massive source 

 
 

in weak field approximation 

screen = 2 parallel planes 



Dynamics in the weak field approximation 

entropy for a plane

potential of the massive source

modification of the area by a test particle
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shift of the particle (   results in the variation
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  shift in the direction orthogonal to the screen 

shifts along the screen (plane) do not change the area
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Notes on the computation 



`Thermodynamics’ 

1 2

 for a particle moving out of the surface

 for a particle moving inside the screen

 can be derived, is not a postulate!

single surface = half of the screen:
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energy balance:

work done by an external force to drag  the test particle with 

coordinates out of the surface
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Static space-time backgrounds  
(which are solutions to the Einstein equations) 

`holographic screen` is a minimal surface (with a topology of a 

hyperplane) in a constant-time slice 
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perturbations: 
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approximation: 
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curvature terms, lambda term, and acceleration terms are “slowly” 

changing, 

 

perturbations caused by the particle are rapidly changing ; 

 

curvature-, lambda-, and acceleration terms can be neglected 

 



 

an approximate translation invariance in z-direction: 
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`Thermodynamical’ parameters of  

a minimal surfaces  
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face

temperature coincides with the Hawking temperature 

for the surface located near a back hole horizon 



`Thermodynamics’   

the surface is located between a gravitating body  

and a test particle 
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one obtains "1st law"  

entropy change when dragging particle out of the

surface

force applied by an observer at infinity 

(for asymptotically flat spacetimes) 
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thank you for attention 


