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IHiStory of the story

1917: After Einstein’s static Universe, de
Sitter solution was the second cosmological
model incorporating a new constant, the so
called cosmological constant A into the
original EFES

Eddington’s famous quote:
Einstein Static Universe : Matter withou
motion

De Sitter world : Motion without matter



Einstein static Universe and de Sitter
Welglo
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B De sitter continued to stay in the stage

ds® = 2dT? — 2V 5T (dR* + R?dQ?)




|] i}
“+ — )

A A
ds* = (1 - T’)f 28 — (1 = ——)"'dr? + r2d0?
. 0

K '\*’E

ds* = 2dT* — ¢*V5T (dR* + R2dQ°)




ComMoVING SYNCRoNOUS COoRGINALE
SYSIEMSH(ESES)

In a synchronous

coordinate system goo = 1 and goa = 0

SEMTICRIERER . = (1,0,0,0) u, = (1,0.0,0)

Synchronous coordinate system could also be a
comoving one, in which the fluid elements are at
rest, only If its pressure gradient vanishes.

Gravitational field can not be stationary in a
synchronous coordinate system.
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B Rain metric (River model of BH)  1amiton & Lisie. AP 2004
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FIDOs see FFOs move radially inward with
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Spatial PIstances ancrtimenterR/alsin
CURVEG SPACEHIMES
Spacetime decomposition Into space and
time: why?
Measurement;4d wep 30
I-A-observer B-observable

!

I1-1+3 vs 3+1 formulations
Threading and foliation °



1+ 3:Threading GEM formalism

D. Lynden-Bell & M.N-Z, Rev. Mod. Phys., 1998




Indeed using this formulation, the 3-velocity of a particle in static and stationary spacetin

o _ dz™

are given by v® = %~ and

dr® cdz®
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respectively [3]. Now using (6) and the above definition of a test particle’s 3-velocity, t

spacetime line element could be written as follows
ds* = c¢*drj,, (1 — —). (1

The above expression gives the line element between any two nearby events in terms of t

velocity of a particle measured along its worldline (connecting the two events) in terms
the synchronized proper time which is the proper time read by clocks synchronized alo
the particle’s worldline.

Also the components of the 4-velocity u! = ddf (7 =0.1,2,3) of a test particle, in terms

the components of its 3-velocity are given by
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Quasi-Maxwell form off EFES for a
perfect fiuid

V-E, =
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Staticity, condition In terms of the

Gravitemagnetic field

M3 stationary space-time Is static If and only If
its gravitomagnetic field vanishes 1.e Bg = 0

1

E‘-Eh r}gmn ‘-E?l =

M.N_Z & A. Parvizi, 2014



Static Spacetimes 1N nen-comoving

Now that we have stablished the staticity condition in terms of the non-existence of the
gravitomagnetic field of the underlving stationary spacetime we are only one step away from
what we mentioned as one of the the main objectives of the present study. To get there we
draw the reader’s attention to an intersting feature in the quasi-Maxwell form of the EFEs

which is the simple fact that by equation (17),

167 + 0
V x (Vh 2E ) : (p ’;)E
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a static (i.e B, = 0) solution produced by one element perfect fluid source, in general has to

be in the comoving frame (v = 0) with respect to the fluid particles, in other words in this

EXA: static interior Schwarzschild solution which is obtained in the
comoving (but not synchronous) coordinate system

EXC: An obvious exception in the above feature is the case of
a perfect fluid with EOS of dark energy, i.e p = —p = const.




[rrespective of the spacetime symmetry, a perfect fluid in a non-comoving frame could be the
source of a static spacetime, only if its EOS is that of dark energy/cosmological constant
namely p = —p = const..

[n this way de Sitter-type solutions in their static forms are characterized as the only static,
(one element) perfect fluid solutions of EFEs in non-comoving frames. To be specific, by
de Sitter-type spacetimes we mean those static solutions of the generalized vacuum EFEs
Ray = Agay (A > 0), the so called (static) Einstein spaces, which reduce to the flat spacetime
in the limit A — 0. Further restriction to a special symmetry will lead to the static form of
the corresponding de Sitter-type spacetime, for example in the case of spherical symmetry
one arrives at (1) and in the case of axial or cylindrical symmetry to genuinly different

solutions discussed later in the text. To achive this goal we will employ a formulation of




Application of the time transformation transforms the metric
to the GP coordinates corresponding to the proper time of freely
escaping observers along the outgoing radial timelike geodesics
which also represent the trajectories of the fluid elements. This
IS so because this transformation leads to the coordinate system
In which u”a = (1, 0, 0, 0), while the radial coordinate
transformation takes the metric to its synchronous form in
CSCS (1.e g00 = 1 and g0a = 0) where now

u a=(1,0,0,0). On the other hand due to the vanishing of the
pressure gradient for the perfect fluid with EOS p = —p = const.,
a synchronous coordinate system could also be a comoving one
in which the perfect fluid elements
are at rest.




As another example of a de Sitter-tvpe spacetime we consider the Narial metric which 1s

given by the following line element in isotropic non-comoving spherical coordinates |12|,
: 2\ 2 1,2 N=17.2 1 9 © 9070
ds* = (1= Ar")cdt” — (1= Ar?)Hdr” - K(d@‘ +sin” fdo”), (A >0) (24)

which is a product space dS; x S, In the CSCS, its dynamical version (also called Berttoti-

Kasner space) is given by the following line element
9 2 32 WAT 11?2 1 7 .9 9 2
ds* = AdT? - VAT 4R? - (06" 4 sin’ g?). A% x §* (95)
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ds’ = (1 — Az*)c?dt” — (1 — Az*)"Hdz” — -
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1S, x R?

reduces to flat spacetime as A — 0

W. Rindler, Phys. Lett. A 245, 363 (1998)







On the other hand, its one-directional expansion and
one-directional field are rather puzzling in light of the
fact that a A-term in the field equations is tantamount
to thc energy tensor of an exotic but isotropic fluid.
How can isotropic sources “cause” a one-directional
field? Is this another example of an anti-Marchian uni-

verse, 1.€. one whose spacetime symmetries are incom-
patible with the symmetries of its sources? The answer

How can 1sotropic sources “cause” a one-directional field? Is this another example of an
anti-Machian universe, i.e. one whose spacetime symmetries are incompatible with the sym-

metries of its source?




By the above arguments our answer (o this question 1s
clear. The spacetime symmetries are compatible with the
symmetries of its both dark and nondark sources. In this
case while there 1s no nondark source for the field, 1t
possesses a dark source which 1s a perfect fluid with an
EOS p = —p and a unidirectional (bulk) motion. This
motion defines a distinct CSCS 1n which the dynamic
version of the metric 15 given by (26) and whose unidi-
rectional expansion 1s naturally dictated by the dark fluid’s
velocity.




-_______________________________________________________________________________________________________________________________
The class of static cylindrically symmetric vacuum solutions. which was found by Levi-Civita in

1919 [1]. can be written in the form
dSE —_ _pil-:F..-'rEth i p—‘iﬂ'{l—ia}fzdzﬂ n GEPE[I—EF]fEdqﬁE n dpg, (1)

where ¥ = 1 — 20 4+ 40%. The parameter o € (0, }T) may be interpreted as the mass per unit
length of the source located along the axis p = 0. while C' is the conicity parameter (see [2] for
more details). When ¢ = 0. Minkowski space in cylindrical coordinates is recovered.

In 1986, a generalisation of (1) to include a non-zero cosmological constant A was obtained

by Linet [3] and Tian [4] (see also [5]) in the form
1s? — Qzﬁ(_P—z{l—ngg?jfaz 442 4 p—201+40-807) /3% 4 2 | 2 p4(1-20—20%) /37 dqﬁj) +dp?, (2)

where p 1s a proper radial distance from the axis and

mp) )

Qp) = ! Sin(m,ﬂ), P{p)zitam( 5
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J. B. Griffiths and J. Podolsky, Phys. Rev. D 81, 064015

(2010).

Interestingly. the “no source” limit o = 0 is not the (aunti-)de Sitter space, as one would

naturally expect! For ¢ = 0. the Linet-Tian metric reduces to

407 (1 =9 ., 3
Sl D VLN Sy (15)

3A p A (1 —p7)

ds* = p*(—dt* + B dy'?) +

P I e Y . ~ S . S .



VI. CYLINDRICALLY SYMMETRIC DE SITTER-TYPE SPACETIME

To reinforce the above iterpretation and as another example of a de Sitter-type spacetime

we conslder the following static solution to the MEFESs,

9 3/\ ) ﬁ 9/ ﬁ 9
ds® = cos’ (\/2 )(dt —dz*) - dp” - —%111 (\/—fp) cos ™/ (\/2 p) do™.  (31)

3A 2

which could be obtained from the spacetime metric of a cylindrical distribution of matter i

the presence of the cosmological constant, by setting the linear mass density equal to zero

reduces to flat spacetime as A — 0




above solution can be obtained as a special case (v = —1) of static cylindrically symmetric

perfect fluid solutions with barotropic EOS p = ~p [22] in the following equivalent form,

ds® = F?3(dt* — dz?) — F~'dp* — F Y352 de? (33)
F=1- 21&,52, (34)
by the following transformation
2 3A
p= NETY sin (\/7,0) (35)
e
ds® = dT° — F7'3(p, T)B(p, T)(dp* + p*de*) — F*3(p, T)dz> (36)
through the transformations
dt = F~%dT + ABF~'dp (37)

where the functions A and B are given by

A= (F'Y3 — )2 (39)
L
>

(40)

/ dB
V(= EARB2)E — (1— A BY)



Conclusions

A one element perfect fluid in a non-comoving frame could be the source of a static spacetime,
only if its EOS is that of dark energy.

The above assertion shows that the de Sitter spacetime and de Sitter-type solutions are

unique solutions. and further implies why there should be different de Sitter-type spacetimes.

25



Our answer :
There Is a hidden parameter which distinguishes
between diffrent de Sitter-type solutions and

that i1s the velocity of the perfect fluid with EOS
p = —p = const. which formally plays

the role of the cosmological constant in these
solutions.

T = (p + p)uu’ — pg®




Borrowing Eddington’s language:
Einstein static Universe is a Universe In a
coordinate system with “comoving matter
and non-comoving dark energy”,
Time-(in)dependent de Sitter-type
spacetimes are Universes in a coordinate
system with “(non-) comoving dark fluid”
and

Minkowski spacetime Is the “no matter no
dark energy” or “no nothing” Universe



Identification of the geometric (cosmological
constant) term Agij, with a perfect fluid with
the EOS p = —p = const., although
mathematically consistent , obscures the
crucial role of the dark fluid’s velocity In
defining a preferred comoving coordinate
system In de Sitter-type spacetime

o

For a consistent interpretation of de Sitter-
type spacetimes one should model the
cosmological term as a perfect (dark ) fluid.



T'Ranks 1or your
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