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• Bootstrap program : Solve the CFT from consistency conditions

without assuming the Lagrangian.

Ferrara, Gatto and Grillo (1973) and Polyakov (1974).

• Very ambitious since there is an infinite number of unknown

parameters and also an infinite number of constraints.

• CFT developed much more late in the 80’s by using some

additional conditions (unitarity + minimality). → BPZ

• Recently, many progress in 3d (and > 3d) for the Ising model

with a bootstrap approach.

• I will present results for the Potts model in 2d. For some values

of Q, it corresponds to a unitary minimal model CFT. For general

values of Q, it is not. General case and in particular the limit

Q → 1, i.e. percolation ?
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A CFT is specified by :

• Spectrum S = {Oi} of primary operators with their dimensions

and spins : ∆i, si.

• The OPE : operator product expansion for primary operators :

Oi(x)Oj(0) ≃
∑

k

Ck
ijP (x, ∂x)Ok(x) (1)

with P (x, ∂x) describing the descendants.

• ∆i, si, C
k
ij describe the CFT, i.e. we can compute any correlation

function.

• The problem is to determine consistent sets of such data.
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Conformal invariance (in D dimensions) :

• Translation by a:

x → x+ a (2)

• Dilatation by λ:

x → λx (3)

• Special conformal transformations (SCT) by y:

x → x+ xy2

1 + 2x.y + x2y2
(4)
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A first step is to use the symmetries corresponding to the conformal

invariance : Conformal kinematics

• two-point correlation function is fixed by conformal symmetry

(dilatation) :

〈Oi(x)Oj(y)〉 =
δij

|x− y|2∆i
(5)

This also fixes the normalisation of the fields Oi.

• three-point correlation function is also constrained by the

conformal symmetry (special conformal transformations) :

〈Oi(x)Oj(y)Ok(z)〉

≃ Cijk

|x− y|∆i+∆j−∆k |y − z|∆j+∆k−∆i|x− z|∆i+∆k−∆j
(6)

and the Cijk are the same which already appeared in the OPE.
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Next we consider the four-point correlation function. This is more

complicated

• Starting from a general function f(z1, z2, z3, z4) we can impose

z1 = 0 (translation) : f(0, z2, z3, z4)

• Next we use the SCT to impose z2 → ∞ : f(0,∞, z3, z4)

• Next we use rotation + dilatation to put z3 at a fixed point :

f(0,∞, 1, z4).

That’s it. z4 can not be fixed ! So the four point correlation function

will depend on one variable.
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Thus from the kinematics, we can only get :

〈Oi(z1)Oj(z2)Ok(z3)Ol(z4)〉 = (7)
( |z24|
|z14|

)∆i−∆j
( |z14|
|z13|

)∆k−∆l g(u, v)

|z12|∆i+∆j |z34|∆k+∆l

with g(u, v) an arbitrary function of the conformally invariant

cross-ratios

u =
z212z

2
34

z213z
2
24

; v =
z214z

2
23

z213z
2
24

(8)

and z12 = z1 − z2, etc.
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We will consider from now on the four-point correlation function of

the spin operator, with an associated field φσ and a dimension ∆σ.

This makes the task much easier since then we can also use the

invariance under permutations :

〈φσ(z1)φσ(z2)φσ(z3)φσ(z4)〉 = 〈φσ(z2)φσ(z3)φσ(z4)φσ(z1)〉
= 〈φσ(z3)φσ(z4)φσ(z1)φσ(z2)〉
= etc.

Next, we use the OPE for performing an expansion of the four-point

correlation function

φσ(z1)φσ(z2) ≃
∑

k

Ck
σσOk ; φσ(z3)φσ(z4) ≃

∑

k′

Ck′

σσOk′ (9)
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Putting all this in the four-point correlation function, one gets

〈φσ(z1)φσ(z2)φσ(z3)φσ(z4)〉 =
∑

k

(Ck
σσ)

2 〈OkOk〉 (10)

This is represented as

〈φσ(z1)φσ(z2)φσ(z3)φσ(z4)〉 =
〈

φσ(z1)φσ(z2)φσ(z3)φσ(z4)

〉

(11)

=
∑

k

φσ(z1)

φσ(z2)

φσ(z3)

φσ(z4)

Ok
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We could have started after a permutation. Then we would get

〈φσ(z1)φσ(z2)φσ(z3)φσ(z4)〉 =
〈

φσ(z1)φσ(z2)φσ(z3)φσ(z4)

〉

(12)

=
∑

k

φσ(z1)

φσ(z2)

φσ(z3)

φσ(z4)

Ok
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Graphically, this gives the conformal bootstrap equation

∑

k

φσ(z1)

φσ(z2)

φσ(z3)

φσ(z4)

Ok =
∑

k

φσ(z1)

φσ(z2)

φσ(z3)

φσ(z4)

Ok

This corresponds to the s channel and t channel. There is also a

third channel (u) : φσ(z1)φσ(z2)φσ(z3)φσ(z4)
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In more details, the s− t conformal bootstrap equation is

∑

k

(Ck
σσ)

2F z1z2,z3z4
∆k,sk

(u, v) =
∑

k

(Ck
σσ)

2F z1z3,z2z4
∆k,sk

(v, u) (13)

with F z1z2,z3z4
∆k,sk

(u, v) the conformal block for the operator k with

dimension ∆k and spin sk and

u =
z12z34
z13z24

; v =
z14z23
z13z24

(14)

and z12 = z1 − z2, etc.

Each conformal block F z1z2,z3z4
∆k,sk

(u, v) corresponds to one operator

Ok in the OPE with descendants.
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• To solve these equations, one considers
∑

k

(Ck
σσ)

2(F z1z2,z3z4
∆k,sk

(u, v)−F z1z3,z2z4
∆k,sk

(v, u)) =

∑

k

pkfk = 0 (15)

with pk > 0.

• One then searches for conditions on ∆k, sk such that the set of

fk spans (or not) a positive cone.

• If it spans a positive cone, then eq.(15) can not be satisfied.

• This gives restrictions on the values of ∆k, sk.

• Further details : S. Rychkov, arXiv:1601.05000
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• Potts model is a simple spin model.

• On a regular lattice G, each site contains a variable σi which can

takes one among Q values and the contribution to the energy for

two neighboring sites is δσi,σj
.

H = −
∑

<ij>

δσi,σj
; Z =

∑

σi

e−βH (16)

• This model can be considered in any dimension.

• In two dimensions, the model is critical for β = log (1 +
√
Q). For

Q ≤ 4 it corresponds to a second order phase transition i.e. a

CFT.
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Some well know models are :

• Q = 2 : Ising model, m = 3 CFT with c = 1/2,

• Q = 3 : 3-state Potts model, m = 5 CFT with c = 0.8

• Q = 4: 4-state Potts model, m → +∞ CFT with c = 1.0

• Other values of m : tricritical Potts model : Potts model with

vacancies or dilution.

• Extension for non integer values of Q: Potts random cluster

model.
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• We consider graphs G build by adding randomly bonds with a

probability p. Each graph contributes with the following

probability :

Probability(G) = Q#clustersp#bonds(1− p)#edges without bond (17)

This model is critical for each value of Q ≤ 4 and for

pc =
√
Q√

Q+1

• At p = pc, local conformal invariance.

• pc = 1− e−β → : Fortuin-Kasteleyn clusters.

• Q = 4 cos2 πγ2, c = 1− 6(γ − 1
γ
)2, (|γ| ≤ 1)

• For Q = 2, 3, 4 corresponds the spin models σi = 1, · · · , Q.



Potts models in two dimensions

Conformal Bootstrap in percolation and related models IPM, 24-27 October 2016

Computation of correlation function is done by the construction of

random cluster :

• 〈σ(z1)σ(z2)〉 = Probability(z1 ∼ z2) with Probability(z1 ∼ z2) the

probability that z1 and z2 are in the same random cluster.

• 〈σ(z1)σ(z2)σ(z3)〉 = Probability(z1 ∼ z2 ∼ z3). Delfino, Viti (2010)

and Delfino, Picco, Santachiara and Viti (2013).

• 〈σ(z1)σ(z2)σ(z3)σ(z4)〉 = Probability(z1 ∼ z2 ∼ z3 ∼ z4) ? More

complicated than that. For that case, we can have

factorizations : (z1 ∼ z2) and (z3 ∼ z4) or (z1 ∼ z3) and (z2 ∼ z4),
etc, which can also contribute.

For example, for Q = 2 with σ = ±1, 〈σ(z1)σ(z2)σ(z3)σ(z4)〉 will

get a contribution from σ(z1) = 1, σ(z2) = 1, σ(z3) = 1, σ(z4) = 1
which will be the same as from σ(z1) = 1, σ(z2) = 1, σ(z3) = −1,

σ(z4) = −1
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• In general, we have to consider the four types of clusters

(Delfino and Viti, 2010, 2011)

P0 : z1 ∼ z2 ∼ z3 ∼ z4 ; P1 : z1 ∼ z2 and z3 ∼ z4
P2 : z1 ∼ z4 and z2 ∼ z3 ; P3 : z1 ∼ z3 and z2 ∼ z4

• For the Q Potts models, the ”ordinary” four point correlation

function is

〈σ(z1)σ(z2)σ(z3)σ(z4)〉 ≃ P0+
(Q− 1)

Q2 − 3Q+ 3
(P1+P2+P3)(18)

up to some normalization (see later).
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P0 :
z1 z3

z2 z4

P1 :

z1 z3

z2 z4
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P2 :

z1 z3

z2 z4

P3 :

z1 z3

z2 z4
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We can consider the special limit with z1 → z2 and z3 → z4 while z1
is very far from z3.

• P0 will go to the limit A2(z1, z2)A2(z3, z4)× A2(z1, z3)
So in the limit |z1 − z2| = |z3 − z4| = a (the lattice spacing), we

will get

P0(z) ≃ A2
2z

−2∆ (19)

with A2 the normalization of the two point correlation function

(and z = |z1 − z3|. Different from the z used later on).

• In the same limit, we then expect

P1(z) ≃ A2
2(1− z−2∆) (20)

The first term can be interpreted like the presence of the identity

operator.
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• Difficult to predict for P2(z). But it will be very small !!!

• For P3(z), we also expect a small exponent since in the limit of

small distance z1 − z2 and z3 − z4, the two clusters must not

touch. One can expect that it is related to the some boundary

operator.

• Note also that in this limit, we can also fixe the normalization (on

the lattice) of eq.(20) :

〈σ(z1)σ(z2)σ(z3)σ(z4)〉 = N (P0 +
(Q− 1)

Q2 − 3Q+ 3
(P1 + P2 + P3))

= A2
2 (21)

and then the normalization on the lattice is chosen such that

(Identity is normalized to one in CFT!).

N =
Q2 − 3Q+ 3

Q− 1
× 1

A2
2

(22)
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First Numerical results

• We expect the general behaviour (after changing the

normalisation)

〈σ(z1)σ(z2)σ(z3)σ(z4)〉 ≃ |z12|−4∆σ |z34|−4∆σ

(1 +
∑

i

z2∆iFi(z) + · · ·) (23)

with z = z12z34
z13z24

. ∆σ is the conformal dimension (the physical

dimension is 2∆σ = 1/8 for Ising).

• In the following, we always remove the trivial part

|z12|−4∆σ |z34|−4∆σ .

• We measure separately P0, P1, P2, P3. We then fit them to the

previous form looking for the smallest values for ∆i.
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• We obtain, for all values of Q,

P0 ≃ α0z
2∆σ(1 + · · ·) + z∆2 (24)

and ∆2 is large. In particular, there is no identity. This is in

agreement with the previous arguments.

• Again, for all values of Q, we obtain

P1 ≃ 1− α0z
2∆σ(1 + · · ·) + · · · (25)

Here, we obtain the same constant α0 !!! This is also in

agreement with the previous arguments.

• P2 is small, difficult to fit

• P3 ≃ r2∆i(1 + · · ·) with 2∆i ≃ 1.5 large.
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Figure 1: Data for Q = 3 Potts model
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• We can compare with simple models: Ising model or Q = 2.

σσ ≃ 1 + φǫ (26)

So we will obtain

〈σ(z1)σ(z2)σ(z3)σ(z4)〉 ≃ 〈11〉+ 〈φǫφǫ〉
≃ 1 + z + · · ·
= P0 + P1 + P2 + P3 (27)

So the spin terms from P0 and P1 cancel each other !

• Q = 3

σσ ≃ 1 + σ + φǫ + φX + φY + φZ (28)

and then

〈σ(z1)σ(z2)σ(z3)σ(z4)〉 ≃ 1 + α0/3z
2∆σ + · · ·

= P0 + (2/3)(P1 + P2 + P3) (29)
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• Q = 1

〈σ(z1)σ(z2)σ(z3)σ(z4)〉 = P0 ≃ α0r
2∆σ (30)

so no more identity !

• Having no identity is puzzling at first. Indeed, in the usual

bootstrap, one always consider

σσ ≃ 1 +
∑

i

C i
σσϕi (31)

which corresponds to saying C0
σσ = 1 or equivalently saying that

〈σ(z1)σ(z2)〉 ≃ |z1 − z2|−4∆ (32)
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• Global conformal symmetry:

Pσ({zi}) = |z1 − z3|−4∆σ |z2 − z4|−4∆σPσ







(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
︸ ︷︷ ︸

≡z







• Symmetry under point permutations

P0(z1, z2, z3, z4) = P0(z1, z3, z2, z4) = P0(z1, z3, z4, z2)

P1(z1, z2, z3, z4) = P2(z1, z3, z2, z4) = P3(z1, z3, z4, z2)
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Mixing global conformal invariance and permutation symmetry

channel limit permutation Cross ratio

s z1 → z2 id z
t z1 → z4 (13) 1− z
u z1 → z3 (14) z/(z − 1)

s :

z2

z1

z3

z4

t

z2

z1

z3

z4
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We have the following relation for the P ’s :

P0(z) =
︸︷︷︸

s−t symmetry

P0(1− z) =
︸︷︷︸

s−u symmetry

|1− z|−4∆σP0

(
z

z−1

)

P1(z) = P3(1− z) = |1− z|−4∆σP1

(
z

z−1

)

P2(z) = P2(1− z) = |1− z|−4∆σP3

(
z

z−1

)

P0 : P1 : P2 : P3 :
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We start from the variable z :

z =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
(33)

and we exchange z1 with z3 :

w =
(z3 − z2)(z1 − z4)

(z3 − z1)(z2 − z4)
= −(z3 − z2)(z1 − z4)

(z1 − z3)(z2 − z4)
(34)

= −(z1 − z2)(z3 − z2)

(z1 − z3)(z2 − z4)
− (z2 − z4)(z3 − z2)

(z1 − z3)(z2 − z4)

= −(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
− (z1 − z2)(z4 − z2)

(z1 − z3)(z2 − z4)
− (z2 − z4)(z3 − z2)

(z1 − z3)(z2 − z4)

= −z +
(z1 − z2)

(z1 − z3)
− (z3 − z2)

(z1 − z3)
= −z +

(z1 − z2)

(z1 − z3)
+

(z2 − z3)

(z1 − z3)
= 1− z
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We look for functions Rσ that can be related to the Pσ:

R0 ∝ P0 + µs (P1 + P2 + P3) , R1 ∝ P0 + µss (P2 + P3) + µP1, ...

The most general form consistent with local conformal symmetry

Rσ =
∑

(∆,∆̄)∈S

D∆,∆̄F∆({zi})F∆̄({z̄i}) (35)

F∆({zi}) Virasoro block with ∆(0, 1
2
) primary fields and internal field

∆
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Game rules:

Finding the spectrum S and the structure constants D∆,∆̄

consistent with Rσ.

Ex. R2(z) = R2(1− z)

∑

(∆,∆̄)∈S

D∆,∆̄ (F∆(z)F∆̄(z̄)−F∆(1− z)F∆̄(1− z̄)) = 0 . (36)
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Guessing the spectrum S(k)...

• We can show that the single-valuedness of correlation functions

imposes the following condition on the spectrum

∆− ∆̄ ∈ 1

2
Z (37)

• An other important result that can be shown : if same spectrum

and structure constant in two channels, the spectrum is the

same in the third channel if and only if the spectrum is even, i.e.

∆− ∆̄ ∈ 2Z (38)

Ok for P0. To match the Pσ, σ = 1, 2, 3, we have to include also

odd spins.
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Our ansatzes

∆(r,s) =
c− 1

12
+

1

4

(

rβ − s

β

)2

. (39)

SX,Y =
{
(∆(r,s),∆(r,−s))

}

r∈X,s∈Y with X ⊂ Z, Y ⊂ 1

2
Z(40)

We considered various spectrum based on SX,Y and found a good

agreement with the bootstrap for R1, R2, R3 with the particular case

S2Z,Z+ 1
2

(41)

This spectrum can also be motivated / justified by the following

considerations :
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• A first motivation is that the leading state is the spin operator

with the dimension ∆(0,1/2) = ∆σ

• A second motivation is that such a spectrum was already found

for Q = 4 which is a special case of the Ashkin-Teller model

considered by Al. Zamolodchikov (1986).

• Also, fields with dimensions ∆(0,Z+1/2) correspond to the

magnetic series identified by Dotsenko & Fateev (1984), Saleur

(1987) and Delfino (2013).

• The spectrum S2Z,Z+ 1
2

also appear in the partition functions

computed by Di Francesco, Saleur & Zuber (1987)

• But the main justification, is that it works !!!
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We have found 3 solutions, Ri, i = 1, 2, 3 which satisfy the

conformal bootstrap equations for all the values of Q.

s t u

R1 S0 S2Z,Z+ 1
2

S2Z,Z+ 1
2

R2 S2Z,Z+ 1
2

S2Z,Z+ 1
2

S0

R3 S2Z,Z+ 1
2

S0 S2Z,Z+ 1
2

Here, S0 corresponds to the sector which we have not found yet

(but are still looking for ...)
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For instance we found for R2 and Q = 1 :

(r, s) (∆, ∆̄) D∆,∆̄(24) c∆,∆̄(24)
(
0, 1

2

) (
5
96
, 5

96

)
1.0000000000 0

(
−2, 1

2

) (
39
32
, 7

32

)
0.0385548052 1.3× 10−8

(
2, 1

2

) (
7
32
, 39

32

)
0.0385548052 1.3× 10−8

(
0, 3

2

) (
77
96
, 77

96

)
−0.0212806512 4.1× 10−8

(
−2, 3

2

) (
95
32
, − 1

32

)
0.0004525024 1.2× 10−7

(
2, 3

2

) (
− 1

32
, 95

32

)
0.0004525024 1.2× 10−7

(
0, 5

2

) (
221
96
, 221

96

)
−0.0000356379 2.5× 10−6

(
−4, 1

2

) (
119
32
, 55

32

)
−0.0000029746 1.2× 10−5

(
4, 1

2

) (
55
32
, 119

32

)
−0.0000029746 1.2× 10−5
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• This is obtained by solving the equation :

∑

(∆,∆̄)∈S

D∆,∆̄ (F∆(z)F∆̄(z̄)−F∆(1− z)F∆̄(1− z̄)) = 0 . (42)

with the condition D(0,1/2),(0,1/2) = 1 (normalization).

• Truncation at the level N in the number of fields.

• Compute the conformal blocks F∆(z) with Zamolodchikov’s

recursive formula.

• Select N − 1 random values of zi and solve eq.(42) : DN
∆,∆̄

• Repeat the same operation with other set of random values zi
and compute the variance other the different results of DN

∆,∆̄
. If

these variances, c∆,∆̄ remains small, it is ok.

• Take the limit limN→∞ DN
∆,∆̄

. N = 24 in the previous results for

R = 2, Q = 1.
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Comparison with Monte-Carlo calculations : Linear relations

between Rσ and Pi

Rσ = λ (P0 + µPσ) , (σ = 1, 2, 3) (43)

q λ µ
1. 0.9563 -2.0

1.25 0.9426 -3.32

1.5 0.9281 -5.95

1.75 0.9142 -13.85

2.25 0.8881 9.05

2.5 0.8722 4.46

2.75 0.8555 3.48

3. 0.8385 2.0
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• The parameters λ and µ are obtained by fitting the solution of

the bootstrap with combination of the Monte Carlo simulations

for the following correlation functions :

ρ
2∆

(0,12 )R2

(
ρeiθ, 0,∞, 1

)
(44)

• Q = 1 for various values of θ. For that case, λ and µ do not

depend on θ.

• θ = 0 for various values of Q
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A series of comments:

• The conformal boostrap solutions match, in the case of Q = 3
with W3 correlation function, and at Q = 4 with Zamolodchikov

solutions for Ashkin-Teller model.

• For Q = 4, Zamolodchikov also found the fourth solution i.e.

S0 = S2Z,Z (45)

But this does not work in general. We are still looking for such a

solution for general Q !!!

• On general grounds, we can expect that the ground state is the

identity (i.e. ∆ = 0) in S0. This is indeed the case for

Zamolodchikov solution for Q = 4. For other values of Q, S2Z,Z

would contain operators with negative dimension.
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• 2D Conformal bootstrap approach provided new four point

functions that are in excellent agreement with Monte Carlo

results. No logarithmic features so far.

• A continent to explore: i) determine S0, ii) Liouville c ≤ 1 (Cc≤1)

play a role? iii) other probabilities,,,

• Available codes at

https://github.com/ribault/bootstrap-2d-Python
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