Conformal Bootstrap in percolation and related models

Marco Picco LPTHE UPMC, Sorbonne Universités and CNRS

October 25, 2016

- Introduction
- CFT and bootstrap, general results.
- Potts models in two dimensions.
- Conformal bootstrap for Potts models.
- Conclusion

Conformal Bootstrap in percolation and related models

Based on a work done with

Sylvain Ribault, IPhT, CEA/Saclay, France

and

Raoul Santachiara, LPTMS, Université Paris-Saclay

A first part is available as "A conformal bootstrap approach to critical percolation in two dimensions", Marco Picco, Sylvain Ribault, Raoul Santachiara SciPost Phys., 1(1), 009 (2016) and http://arxiv.org/abs/1607.07224

Conformal Bootstrap in percolation and related models

Introduction

Introduction

- Bootstrap program : Solve the CFT from consistency conditions without assuming the Lagrangian.
 Ferrara, Gatto and Grillo (1973) and Polyakov (1974).
- Very ambitious since there is an infinite number of unknown parameters and also an infinite number of constraints.
- CFT developed much more late in the 80's by using some additional conditions (unitarity + minimality). \rightarrow BPZ
- Recently, many progress in 3d (and > 3d) for the Ising model with a bootstrap approach.
- I will present results for the Potts model in 2d. For some values of Q, it corresponds to a unitary minimal model CFT. For general values of Q, it is not. General case and in particular the limit $Q \rightarrow 1$, i.e. percolation ?

Conformal Bootstrap in percolation and related models

CFT and bootstrap, general results

A CFT is specified by :

- Spectrum $S = \{O_i\}$ of primary operators with their dimensions and spins : Δ_i, s_i .
- The OPE : operator product expansion for primary operators :

$$\mathcal{O}_i(x)\mathcal{O}_j(0) \simeq \sum_k C_{ij}^k P(x,\partial_x)\mathcal{O}_k(x)$$
 (1)

with $P(x, \partial_x)$ describing the descendants.

- Δ_i, s_i, C_{ij}^k describe the CFT, *i.e.* we can compute any correlation function.
- The problem is to determine consistent sets of such data.

Conformal Bootstrap in percolation and related models

Conformal invariance (in D dimensions) :

• Translation by *a*:

 $x \to x + a$ (2)

• Dilatation by λ :

$$x \to \lambda x$$
 (3)

Special conformal transformations (SCT) by y:

$$x \to \frac{x + xy^2}{1 + 2x.y + x^2y^2}$$
 (4)

Conformal Bootstrap in percolation and related models

A first step is to use the symmetries corresponding to the conformal invariance : Conformal kinematics

 two-point correlation function is fixed by conformal symmetry (dilatation) :

$$\langle \mathcal{O}_i(x)\mathcal{O}_j(y)\rangle = \frac{\delta_{ij}}{|x-y|^{2\Delta_i}}$$
 (5)

This also fixes the normalisation of the fields \mathcal{O}_i .

• three-point correlation function is also constrained by the conformal symmetry (special conformal transformations) :

$$\langle \mathcal{O}_{i}(x)\mathcal{O}_{j}(y)\mathcal{O}_{k}(z)\rangle \simeq \frac{C_{ijk}}{|x-y|^{\Delta_{i}+\Delta_{j}-\Delta_{k}}|y-z|^{\Delta_{j}+\Delta_{k}-\Delta_{i}}|x-z|^{\Delta_{i}+\Delta_{k}-\Delta_{j}}}$$
(6)

and the C_{ijk} are the same which already appeared in the OPE.

Next we consider the four-point correlation function. This is more complicated

- Starting from a general function $f(z_1, z_2, z_3, z_4)$ we can impose $z_1 = 0$ (translation) : $f(0, z_2, z_3, z_4)$
- Next we use the SCT to impose $z_2 \rightarrow \infty$: $f(0, \infty, z_3, z_4)$
- Next we use rotation + dilatation to put z_3 at a fixed point : $f(0, \infty, 1, z_4)$.

That's it. z_4 can not be fixed ! So the four point correlation function will depend on one variable.

Thus from the kinematics, we can only get :

$$\langle \mathcal{O}_{i}(z_{1})\mathcal{O}_{j}(z_{2})\mathcal{O}_{k}(z_{3})\mathcal{O}_{l}(z_{4}) \rangle = \left(\frac{|z_{24}|}{|z_{14}|} \right)^{\Delta_{i} - \Delta_{j}} \left(\frac{|z_{14}|}{|z_{13}|} \right)^{\Delta_{k} - \Delta_{l}} \frac{g(u, v)}{|z_{12}|^{\Delta_{i} + \Delta_{j}} |z_{34}|^{\Delta_{k} + \Delta_{l}}}$$

$$(7)$$

with g(u, v) an arbitrary function of the conformally invariant cross-ratios

$$u = \frac{z_{12}^2 z_{34}^2}{z_{13}^2 z_{24}^2} \quad ; \quad v = \frac{z_{14}^2 z_{23}^2}{z_{13}^2 z_{24}^2}$$

and $z_{12} = z_1 - z_2$, etc.

Conformal Bootstrap in percolation and related models

IPM, 24-27 October 2016

(8)

We will consider from now on the four-point correlation function of the spin operator, with an associated field ϕ_{σ} and a dimension Δ_{σ} . This makes the task much easier since then we can also use the invariance under permutations :

$$\langle \phi_{\sigma}(z_{1})\phi_{\sigma}(z_{2})\phi_{\sigma}(z_{3})\phi_{\sigma}(z_{4})\rangle = \langle \phi_{\sigma}(z_{2})\phi_{\sigma}(z_{3})\phi_{\sigma}(z_{4})\phi_{\sigma}(z_{1})\rangle$$

$$= \langle \phi_{\sigma}(z_{3})\phi_{\sigma}(z_{4})\phi_{\sigma}(z_{1})\phi_{\sigma}(z_{2})\rangle$$

$$= etc.$$

Next, we use the OPE for performing an expansion of the four-point correlation function

$$\phi_{\sigma}(z_1)\phi_{\sigma}(z_2) \simeq \sum_k C_{\sigma\sigma}^k \mathcal{O}_k \; ; \; \phi_{\sigma}(z_3)\phi_{\sigma}(z_4) \simeq \sum_{k'} C_{\sigma\sigma}^{k'} \mathcal{O}_{k'} \tag{9}$$

Conformal Bootstrap in percolation and related models

Putting all this in the four-point correlation function, one gets

$$\langle \phi_{\sigma}(z_1)\phi_{\sigma}(z_2)\phi_{\sigma}(z_3)\phi_{\sigma}(z_4)\rangle = \sum_k (C^k_{\sigma\sigma})^2 \langle \mathcal{O}_k \mathcal{O}_k\rangle$$
(10)

This is represented as

$$\left\langle \phi_{\sigma}(z_{1})\phi_{\sigma}(z_{2})\phi_{\sigma}(z_{3})\phi_{\sigma}(z_{4})\right\rangle = \left\langle \phi_{\sigma}(z_{1})\phi_{\sigma}(z_{2})\phi_{\sigma}(z_{3})\phi_{\sigma}(z_{4})\right\rangle \quad (11)$$

Conformal Bootstrap in percolation and related models

We could have started after a permutation. Then we would get

$$\langle \phi_{\sigma}(z_{1})\phi_{\sigma}(z_{2})\phi_{\sigma}(z_{3})\phi_{\sigma}(z_{4})\rangle = \left\langle \phi_{\sigma}(z_{1})\phi_{\sigma}(z_{2})\phi_{\sigma}(z_{3})\phi_{\sigma}(z_{4})\right\rangle \quad (12)$$
$$= \sum_{k} O_{k}$$
$$\phi_{\sigma}(z_{2}) \quad \phi_{\sigma}(z_{4})$$

Conformal Bootstrap in percolation and related models

Graphically, this gives the conformal bootstrap equation

This corresponds to the *s* channel and *t* channel. There is also a third channel (*u*) : $\phi_{\sigma}(z_1)\phi_{\sigma}(z_2)\phi_{\sigma}(z_3)\phi_{\sigma}(z_4)$

Conformal Bootstrap in percolation and related models

In more details, the s - t conformal bootstrap equation is

$$\sum_{k} (C_{\sigma\sigma}^{k})^{2} \mathcal{F}_{\Delta_{k},s_{k}}^{z_{1}z_{2},z_{3}z_{4}}(u,v) = \sum_{k} (C_{\sigma\sigma}^{k})^{2} \mathcal{F}_{\Delta_{k},s_{k}}^{z_{1}z_{3},z_{2}z_{4}}(v,u)$$
(13)

with $\mathcal{F}_{\Delta_k,s_k}^{z_1z_2,z_3z_4}(u,v)$ the conformal block for the operator k with dimension Δ_k and spin s_k and

$$u = \frac{z_{12}z_{34}}{z_{13}z_{24}} \quad ; \quad v = \frac{z_{14}z_{23}}{z_{13}z_{24}} \tag{14}$$

and $z_{12} = z_1 - z_2$, etc. Each conformal block $\mathcal{F}_{\Delta_k,s_k}^{z_1z_2,z_3z_4}(u,v)$ corresponds to one operator \mathcal{O}_k in the OPE with descendants.

Conformal Bootstrap in percolation and related models

• To solve these equations, one considers

$$\sum_{k} (C_{\sigma\sigma}^{k})^{2} (\mathcal{F}_{\Delta_{k},s_{k}}^{z_{1}z_{2},z_{3}z_{4}}(u,v) - \mathcal{F}_{\Delta_{k},s_{k}}^{z_{1}z_{3},z_{2}z_{4}}(v,u)) = \sum_{k} p_{k}f_{k} = 0$$
(15)

with $p_k > 0$.

- One then searches for conditions on Δ_k , s_k such that the set of f_k spans (or not) a positive cone.
- If it spans a positive cone, then eq.(15) can not be satisfied.
- This gives restrictions on the values of Δ_k, s_k .
- Further details : S. Rychkov, arXiv:1601.05000

Conformal Bootstrap in percolation and related models

- Potts model is a simple spin model.
- On a regular lattice \mathcal{G} , each site contains a variable σ_i which can takes one among Q values and the contribution to the energy for two neighboring sites is $\delta_{\sigma_i,\sigma_j}$.

$$\mathcal{H} = -\sum_{\langle ij \rangle} \delta_{\sigma_i,\sigma_j} \quad ; \quad Z = \sum_{\sigma_i} e^{-\beta \mathcal{H}}$$
(16)

- This model can be considered in any dimension.
- In two dimensions, the model is critical for $\beta = \log(1 + \sqrt{Q})$. For $Q \le 4$ it corresponds to a second order phase transition *i.e.* a CFT.

Conformal Bootstrap in percolation and related models

Some well know models are :

- Q = 2: Ising model, m = 3 CFT with c = 1/2,
- Q = 3: 3-state Potts model, m = 5 CFT with c = 0.8
- Q = 4: 4-state Potts model, $m \to +\infty$ CFT with c = 1.0
- Other values of *m* : tricritical Potts model : Potts model with vacancies or dilution.
- Extension for non integer values of Q: Potts random cluster model.

We consider graphs G build by adding randomly bonds with a probability p. Each graph contributes with the following probability :

Probability(\mathcal{G}) = $Q^{\# \text{ clusters}} p^{\# \text{ bonds}} (1-p)^{\# \text{ edges without bond}}$ (17)

This model is critical for each value of $Q \leq 4$ and for

$$p_c = \frac{\sqrt{Q}}{\sqrt{Q}+1}$$

- At $p = p_c$, local conformal invariance.
- $p_c = 1 e^{-\beta} \rightarrow$: Fortuin-Kasteleyn clusters.
- $Q = 4\cos^2 \pi \gamma^2, c = 1 6(\gamma \frac{1}{\gamma})^2, (|\gamma| \le 1)$
- For Q = 2, 3, 4 corresponds the spin models $\sigma_i = 1, \dots, Q$.

Conformal Bootstrap in percolation and related models

Computation of correlation function is done by the construction of random cluster :

- $\langle \sigma(z_1)\sigma(z_2)\rangle = \text{Probability}(z_1 \sim z_2)$ with $\text{Probability}(z_1 \sim z_2)$ the probability that z_1 and z_2 are in the same random cluster.
- $\langle \sigma(z_1)\sigma(z_2)\sigma(z_3)\rangle = \text{Probability}(z_1 \sim z_2 \sim z_3)$. Delfino, Viti (2010) and Delfino, Picco, Santachiara and Viti (2013).
- $\langle \sigma(z_1)\sigma(z_2)\sigma(z_3)\sigma(z_4) \rangle = \text{Probability}(z_1 \sim z_2 \sim z_3 \sim z_4)$? More complicated than that. For that case, we can have factorizations : $(z_1 \sim z_2)$ and $(z_3 \sim z_4)$ or $(z_1 \sim z_3)$ and $(z_2 \sim z_4)$, etc, which can also contribute. For example, for Q = 2 with $\sigma = \pm 1$, $\langle \sigma(z_1)\sigma(z_2)\sigma(z_3)\sigma(z_4) \rangle$ will get a contribution from $\sigma(z_1) = 1$, $\sigma(z_2) = 1$, $\sigma(z_3) = 1$, $\sigma(z_4) = 1$ which will be the same as from $\sigma(z_1) = 1$, $\sigma(z_2) = 1$, $\sigma(z_3) = -1$, $\sigma(z_4) = -1$

- In general, we have to consider the four types of clusters (Delfino and Viti, 2010, 2011) $P_0: z_1 \sim z_2 \sim z_3 \sim z_4$; $P_1: z_1 \sim z_2$ and $z_3 \sim z_4$ $P_2: z_1 \sim z_4$ and $z_2 \sim z_3$; $P_3: z_1 \sim z_3$ and $z_2 \sim z_4$
- For the Q Potts models, the "ordinary" four point correlation function is

$$\langle \sigma(z_1)\sigma(z_2)\sigma(z_3)\sigma(z_4)\rangle \simeq P_0 + \frac{(Q-1)}{Q^2 - 3Q + 3}(P_1 + P_2 + P_3)$$
(18)

up to some normalization (see later).

Conformal Bootstrap in percolation and related models

We can consider the special limit with $z_1 \rightarrow z_2$ and $z_3 \rightarrow z_4$ while z_1 is very far from z_3 .

• P_0 will go to the limit $A_2(z_1, z_2)A_2(z_3, z_4) \times A_2(z_1, z_3)$ So in the limit $|z_1 - z_2| = |z_3 - z_4| = a$ (the lattice spacing), we will get

$$P_0(z) \simeq A_2^2 z^{-2\Delta} \tag{19}$$

with A_2 the normalization of the two point correlation function (and $z = |z_1 - z_3|$. Different from the *z* used later on).

• In the same limit, we then expect

$$P_1(z) \simeq A_2^2 (1 - z^{-2\Delta})$$
 (20)

The first term can be interpreted like the presence of the identity operator.

Conformal Bootstrap in percolation and related models

- Difficult to predict for $P_2(z)$. But it will be very small !!!
- For $P_3(z)$, we also expect a small exponent since in the limit of small distance $z_1 z_2$ and $z_3 z_4$, the two clusters must not touch. One can expect that it is related to the some boundary operator.
- Note also that in this limit, we can also fixe the normalization (on the lattice) of eq.(20) :

$$\langle \sigma(z_1)\sigma(z_2)\sigma(z_3)\sigma(z_4) \rangle = \mathcal{N}(P_0 + \frac{(Q-1)}{Q^2 - 3Q + 3}(P_1 + P_2 + P_3))$$

= A_2^2 (21)

and then the normalization on the lattice is chosen such that (Identity is normalized to one in CFT!).

$$\mathcal{N} = \frac{Q^2 - 3Q + 3}{Q - 1} \times \frac{1}{A_2^2}$$

Conformal Bootstrap in percolation and related models

IPM, 24-27 October 2016

22

First Numerical results

• We expect the general behaviour (after changing the normalisation)

$$\langle \sigma(z_1)\sigma(z_2)\sigma(z_3)\sigma(z_4)\rangle \simeq |z_{12}|^{-4\Delta_{\sigma}}|z_{34}|^{-4\Delta_{\sigma}}$$

$$(1+\sum_i z^{2\Delta_i}F_i(z)+\cdots)$$
(23)

with $z = \frac{z_{12}z_{34}}{z_{13}z_{24}}$. Δ_{σ} is the conformal dimension (the physical dimension is $2\Delta_{\sigma} = 1/8$ for Ising).

- In the following, we always remove the trivial part $|z_{12}|^{-4\Delta_{\sigma}}|z_{34}|^{-4\Delta_{\sigma}}$.
- We measure separately P_0, P_1, P_2, P_3 . We then fit them to the previous form looking for the smallest values for Δ_i .

Conformal Bootstrap in percolation and related models

• We obtain, for all values of Q,

$$P_0 \simeq \alpha_0 z^{2\Delta_\sigma} (1 + \dots) + z^{\Delta_2}$$
(24)

and Δ_2 is large. In particular, there is no identity. This is in agreement with the previous arguments.

• Again, for all values of Q, we obtain

$$P_1 \simeq 1 - \alpha_0 z^{2\Delta_\sigma} (1 + \cdots) + \cdots$$

Here, we obtain the same constant α_0 !!! This is also in agreement with the previous arguments.

- P_2 is small, difficult to fit
- $P_3 \simeq r^{2\Delta_i}(1 + \cdots)$ with $2\Delta_i \simeq 1.5$ large.

Conformal Bootstrap in percolation and related models

(25)

Conformal Bootstrap in percolation and related models

• We can compare with simple models: Ising model or Q = 2.

 $\sigma\sigma \simeq 1 + \phi_{\epsilon} \tag{26}$

So we will obtain

$$\langle \sigma(z_1)\sigma(z_2)\sigma(z_3)\sigma(z_4) \rangle \simeq \langle 11 \rangle + \langle \phi_{\epsilon}\phi_{\epsilon} \rangle$$

$$\simeq 1 + z + \cdots$$

$$= P_0 + P_1 + P_2 + P_3$$
 (27)

So the spin terms from P_0 and P_1 cancel each other !

• *Q* = 3

$$\sigma\sigma \simeq 1 + \sigma + \phi_{\epsilon} + \phi_X + \phi_Y + \phi_Z \tag{28}$$

 $= P_0 + (2/3)(P_1 + P_2 + P_3)$

and then

 $\langle \sigma(z_1)\sigma(z_2)\sigma(z_3)\sigma(z_4)\rangle \simeq 1 + \alpha_0/3z^{2\Delta_\sigma} + \cdots$

Conformal Bootstrap in percolation and related models

IPM, 24-27 October 2016

(29)

 $\bullet \quad Q = 1$

$$\langle \sigma(z_1)\sigma(z_2)\sigma(z_3)\sigma(z_4)\rangle = P_0 \simeq \alpha_0 r^{2\Delta_\sigma}$$
 (30)

so no more identity !

 Having no identity is puzzling at first. Indeed, in the usual bootstrap, one always consider

$$\sigma\sigma \simeq 1 + \sum_{i} C^{i}_{\sigma\sigma}\varphi_{i} \tag{31}$$

which corresponds to saying $C_{\sigma\sigma}^0 = 1$ or equivalently saying that

$$\langle \sigma(z_1)\sigma(z_2)\rangle \simeq |z_1 - z_2|^{-4\Delta}$$
 (32)

Conformal Bootstrap in percolation and related models

• Global conformal symmetry:

$$P_{\sigma}(\{z_i\}) = |z_1 - z_3|^{-4\Delta_{\sigma}} |z_2 - z_4|^{-4\Delta_{\sigma}} P_{\sigma} \left(\underbrace{\frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_3)(z_2 - z_4)}}_{\equiv z} \right)$$

• Symmetry under point permutations

$$P_0(z_1, z_2, z_3, z_4) = P_0(z_1, z_3, z_2, z_4) = P_0(z_1, z_3, z_4, z_2)$$

$$P_1(z_1, z_2, z_3, z_4) = P_2(z_1, z_3, z_2, z_4) = P_3(z_1, z_3, z_4, z_2)$$

Conformal Bootstrap in percolation and related models

Mixing global conformal invariance and permutation symmetry

channel	limit	permutation	Cross ratio
S	$z_1 \rightarrow z_2$	id	z
t	$z_1 \rightarrow z_4$	(13)	1-z
u	$z_1 \rightarrow z_3$	(14)	z/(z-1)

Conformal Bootstrap in percolation and related models

We have the following relation for the P's :

$$P_{0}(z) = P_{0}(1-z) = |1-z|^{-4\Delta_{\sigma}} P_{0}\left(\frac{z}{z-1}\right)$$

$$P_{1}(z) = P_{3}(1-z) = |1-z|^{-4\Delta_{\sigma}} P_{1}\left(\frac{z}{z-1}\right)$$

$$P_{2}(z) = P_{2}(1-z) = |1-z|^{-4\Delta_{\sigma}} P_{3}\left(\frac{z}{z-1}\right)$$

$$: \square P_{1}: \square P_{2}: \sum P_{3}: \square$$

Conformal Bootstrap in percolation and related models

 P_0

We start from the variable z:

$$z = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_3)(z_2 - z_4)}$$

and we exchange z_1 with z_3 :

$$w = \frac{(z_3 - z_2)(z_1 - z_4)}{(z_3 - z_1)(z_2 - z_4)} = -\frac{(z_3 - z_2)(z_1 - z_4)}{(z_1 - z_3)(z_2 - z_4)}$$
(34)
$$= -\frac{(z_1 - z_2)(z_3 - z_2)}{(z_1 - z_3)(z_2 - z_4)} - \frac{(z_2 - z_4)(z_3 - z_2)}{(z_1 - z_3)(z_2 - z_4)}$$
$$= -\frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_3)(z_2 - z_4)} - \frac{(z_1 - z_2)(z_4 - z_2)}{(z_1 - z_3)(z_2 - z_4)} - \frac{(z_2 - z_4)(z_3 - z_2)}{(z_1 - z_3)(z_2 - z_4)}$$
$$= -z + \frac{(z_1 - z_2)}{(z_1 - z_3)} - \frac{(z_3 - z_2)}{(z_1 - z_3)} = -z + \frac{(z_1 - z_2)}{(z_1 - z_3)} + \frac{(z_2 - z_3)}{(z_1 - z_3)}$$
$$= 1 - z$$

Conformal Bootstrap in percolation and related models

IPM, 24-27 October 2016

(33)

We look for functions R_{σ} that can be related to the P_{σ} :

 $R_0 \propto P_0 + \mu_s \left(P_1 + P_2 + P_3 \right), \quad R_1 \propto P_0 + \mu_{ss} \left(P_2 + P_3 \right) + \mu P_1, \dots$

The most general form consistent with local conformal symmetry

$$R_{\sigma} = \sum_{(\Delta,\bar{\Delta})\in\mathcal{S}} D_{\Delta,\bar{\Delta}}\mathcal{F}_{\Delta}(\{z_i\})\mathcal{F}_{\bar{\Delta}}(\{\bar{z}_i\})$$
(35)

 $\mathcal{F}_{\Delta}(\{z_i\})$ Virasoro block with $\Delta_{(0,\frac{1}{2})}$ primary fields and internal field Δ

Conformal Bootstrap in percolation and related models

Game rules:

Finding the spectrum S and the structure constants $D_{\Delta,\bar{\Delta}}$ consistent with R_{σ} .

Ex. $R_2(z) = R_2(1-z)$

$$\sum_{(\Delta,\bar{\Delta})\in\mathcal{S}} D_{\Delta,\bar{\Delta}} \left(\mathcal{F}_{\Delta}(z) \mathcal{F}_{\bar{\Delta}}(\bar{z}) - \mathcal{F}_{\Delta}(1-z) \mathcal{F}_{\bar{\Delta}}(1-\bar{z}) \right) = 0 .$$
 (36)

Conformal Bootstrap in percolation and related models

Guessing the spectrum $S^{(k)}$...

 We can show that the single-valuedness of correlation functions imposes the following condition on the spectrum

$$\Delta - \bar{\Delta} \in \frac{1}{2}\mathbb{Z} \tag{37}$$

• An other important result that can be shown : if same spectrum and structure constant in two channels, the spectrum is the same in the third channel if and only if the spectrum is even, *i.e.*

$$\Delta - \bar{\Delta} \in 2\mathbb{Z} \tag{38}$$

Ok for P_0 . To match the P_{σ} , $\sigma = 1, 2, 3$, we have to include also odd spins.

Conformal Bootstrap in percolation and related models

Our ansatzes

$$\Delta_{(r,s)} = \frac{c-1}{12} + \frac{1}{4} \left(r\beta - \frac{s}{\beta} \right)^2 .$$
 (39)

$$\mathcal{S}_{X,Y} = \left\{ (\Delta_{(r,s)}, \Delta_{(r,-s)}) \right\}_{r \in X, s \in Y} \quad \text{with} \quad X \subset \mathbb{Z}, Y \subset \frac{1}{2}\mathbb{Z}(40)$$

We considered various spectrum based on $S_{X,Y}$ and found a good agreement with the bootstrap for R_1, R_2, R_3 with the particular case

$$\mathcal{S}_{2\mathbb{Z},\mathbb{Z}+\frac{1}{2}}$$
 (41)

This spectrum can also be motivated / justified by the following considerations :

Conformal Bootstrap in percolation and related models

- A first motivation is that the leading state is the spin operator with the dimension $\Delta_{(0,1/2)} = \Delta_{\sigma}$
- A second motivation is that such a spectrum was already found for Q = 4 which is a special case of the Ashkin-Teller model considered by Al. Zamolodchikov (1986).
- Also, fields with dimensions ∆_(0,ℤ+1/2) correspond to the magnetic series identified by Dotsenko & Fateev (1984), Saleur (1987) and Delfino (2013).
- The spectrum $S_{2\mathbb{Z},\mathbb{Z}+\frac{1}{2}}$ also appear in the partition functions computed by Di Francesco, Saleur & Zuber (1987)
- But the main justification, is that it works !!!

We have found 3 solutions, R_i , i = 1, 2, 3 which satisfy the conformal bootstrap equations for all the values of Q.

Here, S_0 corresponds to the sector which we have not found yet (but are still looking for ...)

Conformal Bootstrap in percolation and related models

For instance we found for R_2 and Q = 1:

(r,	s)	$(\Delta, ar{\Delta})$	$D_{\Delta,\bar{\Delta}}(24)$	$c_{\Delta,\bar{\Delta}}(24)$
(0,	$\frac{1}{2}$	$\left(rac{5}{96}, rac{5}{96} ight)$	1.0000000000	0
(-2,	$\frac{1}{2}$	$\left(\frac{39}{32}, \frac{7}{32}\right)$	0.0385548052	$1.3 imes 10^{-8}$
(2,	$\left(\frac{\overline{1}}{2}\right)$	$\left(\frac{\overline{7}}{32}, \frac{\overline{39}}{32}\right)$	0.0385548052	$1.3 imes 10^{-8}$
(0,	$\left(\frac{\overline{3}}{2}\right)$	$\left(\frac{\overline{77}}{96}, \frac{\overline{77}}{96}\right)$	-0.0212806512	4.1×10^{-8}
(-2,	$\left(\frac{\overline{3}}{2}\right)$	$\left(\frac{95}{32}, -\frac{1}{32}\right)$	0.0004525024	1.2×10^{-7}
(2,	$\left(\frac{\overline{3}}{2}\right)$	$\left(-\frac{1}{32}, -\frac{95}{32}\right)$	0.0004525024	$1.2 imes 10^{-7}$
(0,	$\left(\frac{\overline{5}}{2}\right)$	$\left(\frac{221}{96}, \frac{221}{96}\right)$	-0.0000356379	$2.5 imes 10^{-6}$
(-4,	$\left(\frac{\overline{1}}{2}\right)$	$\left(\frac{119}{32}, \frac{55}{32}\right)$	-0.0000029746	1.2×10^{-5}
(4,	$\left(\frac{\overline{1}}{2}\right)$	$\left(\frac{55}{32}, \frac{119}{32}\right)$	-0.0000029746	1.2×10^{-5}

Conformal Bootstrap in percolation and related models

• This is obtained by solving the equation :

 $\sum_{(\Delta,\bar{\Delta})\in\mathcal{S}} D_{\Delta,\bar{\Delta}} \left(\mathcal{F}_{\Delta}(z) \mathcal{F}_{\bar{\Delta}}(\bar{z}) - \mathcal{F}_{\Delta}(1-z) \mathcal{F}_{\bar{\Delta}}(1-\bar{z}) \right) = 0 .$ (42)

with the condition $D_{(0,1/2),(0,1/2)} = 1$ (normalization).

- Truncation at the level N in the number of fields.
- Compute the conformal blocks $\mathcal{F}_{\Delta}(z)$ with Zamolodchikov's recursive formula.
- Select N-1 random values of z_i and solve eq.(42) : $D^N_{\Delta,\bar{\Delta}}$
- Repeat the same operation with other set of random values z_i and compute the variance other the different results of $D^N_{\Delta,\bar{\Delta}}$. If these variances, $c_{\Delta,\bar{\Delta}}$ remains small, it is ok.
- Take the limit $\lim_{N\to\infty} D^N_{\Delta,\bar{\Delta}}$. N = 24 in the previous results for R = 2, Q = 1.

Conformal Bootstrap in percolation and related models

Comparison with Monte-Carlo calculations : Linear relations between R_{σ} and P_i

 $R_{\sigma} = \lambda \left(P_0 + \mu P_{\sigma} \right), \quad (\sigma = 1, 2, 3)$

q	λ	μ
1.	0.9563	-2.0
1.25	0.9426	-3.32
1.5	0.9281	-5.95
1.75	0.9142	-13.85
2.25	0.8881	9.05
2.5	0.8722	4.46
2.75	0.8555	3.48
3.	0.8385	2.0

(43)

Conformal Bootstrap in percolation and related models

 The parameters λ and μ are obtained by fitting the solution of the bootstrap with combination of the Monte Carlo simulations for the following correlation functions :

$$\rho^{2\Delta_{(0,\frac{1}{2})}} R_2 \left(\rho e^{i\theta}, 0, \infty, 1 \right)$$
(44)

- Q = 1 for various values of θ . For that case, λ and μ do not depend on θ .
- $\theta = 0$ for various values of Q

Conformal Bootstrap in percolation and related models

 $\mathbf{q} = \mathbf{1}$

Conformal Bootstrap in percolation and related models

Conformal Bootstrap in percolation and related models

 $\theta = \mathbf{0}$

Conformal Bootstrap in percolation and related models

Conformal Bootstrap in percolation and related models

A series of comments:

- The conformal boostrap solutions match, in the case of Q = 3 with W_3 correlation function, and at Q = 4 with Zamolodchikov solutions for Ashkin-Teller model.
- For Q = 4, Zamolodchikov also found the fourth solution *i.e.*

$$\mathcal{S}_0 = \mathcal{S}_{2\mathbb{Z},\mathbb{Z}} \tag{45}$$

But this does not work in general. We are still looking for such a solution for general Q !!!

• On general grounds, we can expect that the ground state is the identity (*i.e.* $\Delta = 0$) in S_0 . This is indeed the case for Zamolodchikov solution for Q = 4. For other values of Q, $S_{2\mathbb{Z},\mathbb{Z}}$ would contain operators with negative dimension.

Conformal Bootstrap in percolation and related models

Conclusion

 2D Conformal bootstrap approach provided new four point functions that are in excellent agreement with Monte Carlo results. No logarithmic features so far.

• A continent to explore: i) determine S_0 , ii) Liouville $c \leq 1$ ($C^{c \leq 1}$) play a role? iii) other probabilities,,,

 Available codes at https://github.com/ribault/bootstrap-2d-Python

Conformal Bootstrap in percolation and related models