Conformal Bootstrap in percolation and related models

October 25, 2016

- Introduction
- CFT and bootstrap, general results.
- Potts models in two dimensions.
- Conformal bootstrap for Potts models.
- Conclusion

Based on a work done with

Sylvain Ribault, IPhT, CEA/Saclay, France
and

Raoul Santachiara, LPTMS, Université Paris-Saclay

A first part is available as
"A conformal bootstrap approach to critical percolation in two dimensions", Marco Picco, Sylvain Ribault, Raoul Santachiara SciPost Phys., 1(1), 009 (2016) and http://arxiv.org/abs/1607.07224

Introduction

Introduction

- Bootstrap program : Solve the CFT from consistency conditions without assuming the Lagrangian. Ferrara, Gatto and Grillo (1973) and Polyakov (1974).
- Very ambitious since there is an infinite number of unknown parameters and also an infinite number of constraints.
- CFT developed much more late in the 80's by using some additional conditions (unitarity + minimality). \rightarrow BPZ
- Recently, many progress in $3 d$ (and $>3 d$) for the Ising model with a bootstrap approach.
- I will present results for the Potts model in $2 d$. For some values of Q, it corresponds to a unitary minimal model CFT. For general values of Q, it is not. General case and in particular the limit $Q \rightarrow$ 1, i.e. percolation?

CFT and bootstrap, general results

CFT and bootstrap

A CFT is specified by :

- Spectrum $\mathcal{S}=\left\{\mathcal{O}_{i}\right\}$ of primary operators with their dimensions and spins: Δ_{i}, s_{i}.
- The OPE : operator product expansion for primary operators :

$$
\begin{equation*}
\mathcal{O}_{i}(x) \mathcal{O}_{j}(0) \simeq \sum_{k} C_{i j}^{k} P\left(x, \partial_{x}\right) \mathcal{O}_{k}(x) \tag{1}
\end{equation*}
$$

with $P\left(x, \partial_{x}\right)$ describing the descendants.

- $\Delta_{i}, s_{i}, C_{i j}^{k}$ describe the CFT, i.e. we can compute any correlation function.
- The problem is to determine consistent sets of such data.

CFT and bootstrap

Conformal invariance (in D dimensions) :

- Translation by a :

$$
\begin{equation*}
x \rightarrow x+a \tag{2}
\end{equation*}
$$

- Dilatation by λ :

$$
\begin{equation*}
x \rightarrow \lambda x \tag{3}
\end{equation*}
$$

- Special conformal transformations (SCT) by y :

$$
\begin{equation*}
x \rightarrow \frac{x+x y^{2}}{1+2 x \cdot y+x^{2} y^{2}} \tag{4}
\end{equation*}
$$

CFT and bootstrap

A first step is to use the symmetries corresponding to the conformal invariance : Conformal kinematics

- two-point correlation function is fixed by conformal symmetry (dilatation) :

$$
\begin{equation*}
\left\langle\mathcal{O}_{i}(x) \mathcal{O}_{j}(y)\right\rangle=\frac{\delta_{i j}}{|x-y|^{2 \Delta_{i}}} \tag{5}
\end{equation*}
$$

This also fixes the normalisation of the fields \mathcal{O}_{i}.

- three-point correlation function is also constrained by the conformal symmetry (special conformal transformations) :

$$
\begin{align*}
& \left\langle\mathcal{O}_{i}(x) \mathcal{O}_{j}(y) \mathcal{O}_{k}(z)\right\rangle \\
& \quad \simeq \frac{C_{i j k}}{|x-y|^{\Delta_{i}+\Delta_{j}-\Delta_{k}}|y-z|^{\Delta_{j}+\Delta_{k}-\Delta_{i}}|x-z|^{\Delta_{i}+\Delta_{k}-\Delta_{j}}} \tag{6}
\end{align*}
$$

and the $C_{i j k}$ are the same which already appeared in the OPE.

CFT and bootstrap

Next we consider the four-point correlation function. This is more complicated

- Starting from a general function $f\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ we can impose $z_{1}=0$ (translation) : $f\left(0, z_{2}, z_{3}, z_{4}\right)$
- Next we use the SCT to impose $z_{2} \rightarrow \infty: f\left(0, \infty, z_{3}, z_{4}\right)$
- Next we use rotation + dilatation to put z_{3} at a fixed point : $f\left(0, \infty, 1, z_{4}\right)$.
That's it. z_{4} can not be fixed! So the four point correlation function will depend on one variable.

CFT and bootstrap

Thus from the kinematics, we can only get :

$$
\begin{align*}
& \left\langle\mathcal{O}_{i}\left(z_{1}\right) \mathcal{O}_{j}\left(z_{2}\right) \mathcal{O}_{k}\left(z_{3}\right) \mathcal{O}_{l}\left(z_{4}\right)\right\rangle= \tag{7}\\
& \quad\left(\frac{\left|z_{24}\right|}{\left|z_{14}\right|}\right)^{\Delta_{i}-\Delta_{j}}\left(\frac{\left|z_{14}\right|}{\left|z_{13}\right|}\right)^{\Delta_{k}-\Delta_{l}} \frac{g(u, v)}{\left|z_{12}\right|^{\Delta_{i}+\Delta_{j}}\left|z_{34}\right|^{\Delta_{k}+\Delta_{l}}}
\end{align*}
$$

with $g(u, v)$ an arbitrary function of the conformally invariant cross-ratios

$$
\begin{equation*}
u=\frac{z_{12}^{2} z_{34}^{2}}{z_{13}^{2} z_{24}^{2}} ; \quad v=\frac{z_{14}^{2} z_{23}^{2}}{z_{13}^{2} z_{24}^{2}} \tag{8}
\end{equation*}
$$

and $z_{12}=z_{1}-z_{2}$, etc.

CFT and bootstrap

We will consider from now on the four-point correlation function of the spin operator, with an associated field ϕ_{σ} and a dimension Δ_{σ}. This makes the task much easier since then we can also use the invariance under permutations :

$$
\begin{aligned}
\left\langle\phi_{\sigma}\left(z_{1}\right) \phi_{\sigma}\left(z_{2}\right) \phi_{\sigma}\left(z_{3}\right) \phi_{\sigma}\left(z_{4}\right)\right\rangle & =\left\langle\phi_{\sigma}\left(z_{2}\right) \phi_{\sigma}\left(z_{3}\right) \phi_{\sigma}\left(z_{4}\right) \phi_{\sigma}\left(z_{1}\right)\right\rangle \\
& =\left\langle\phi_{\sigma}\left(z_{3}\right) \phi_{\sigma}\left(z_{4}\right) \phi_{\sigma}\left(z_{1}\right) \phi_{\sigma}\left(z_{2}\right)\right\rangle \\
& =\text { etc. }
\end{aligned}
$$

Next, we use the OPE for performing an expansion of the four-point correlation function

$$
\begin{equation*}
\phi_{\sigma}\left(z_{1}\right) \phi_{\sigma}\left(z_{2}\right) \simeq \sum_{k} C_{\sigma \sigma}^{k} \mathcal{O}_{k} ; \phi_{\sigma}\left(z_{3}\right) \phi_{\sigma}\left(z_{4}\right) \simeq \sum_{k^{\prime}} C_{\sigma \sigma}^{k^{\prime}} \mathcal{O}_{k^{\prime}} \tag{9}
\end{equation*}
$$

CFT and bootstrap

Putting all this in the four-point correlation function, one gets

$$
\begin{equation*}
\left\langle\phi_{\sigma}\left(z_{1}\right) \phi_{\sigma}\left(z_{2}\right) \phi_{\sigma}\left(z_{3}\right) \phi_{\sigma}\left(z_{4}\right)\right\rangle=\sum_{k}\left(C_{\sigma \sigma}^{k}\right)^{2}\left\langle\mathcal{O}_{k} \mathcal{O}_{k}\right\rangle \tag{10}
\end{equation*}
$$

This is represented as

$$
\begin{equation*}
\left\langle\phi_{\sigma}\left(z_{1}\right) \phi_{\sigma}\left(z_{2}\right) \phi_{\sigma}\left(z_{3}\right) \phi_{\sigma}\left(z_{4}\right)\right\rangle=\left\langle\phi_{\sigma}\left(z_{1}\right) \phi_{\sigma}\left(z_{2}\right) \phi_{\sigma}\left(z_{3}\right) \phi_{\sigma}\left(z_{4}\right)\right\rangle \tag{11}
\end{equation*}
$$

CFT and bootstrap

We could have started after a permutation. Then we would get

$$
\begin{equation*}
\left\langle\phi_{\sigma}\left(z_{1}\right) \phi_{\sigma}\left(z_{2}\right) \phi_{\sigma}\left(z_{3}\right) \phi_{\sigma}\left(z_{4}\right)\right\rangle=\left\langle\stackrel{\rightharpoonup}{\left.\phi_{\sigma}\left(z_{1}\right) \phi_{\sigma}\left(z_{2}\right) \phi_{\sigma}\left(z_{3}\right) \phi_{\sigma}\left(z_{4}\right)\right\rangle}\right. \tag{12}
\end{equation*}
$$

CFT and bootstrap

Graphically, this gives the conformal bootstrap equation

This corresponds to the s channel and t channel. There is also a third channel $(u): \phi_{\sigma}\left(z_{1}\right) \phi_{\sigma}\left(z_{2}\right) \phi_{\sigma}\left(z_{3}\right) \phi_{\sigma}\left(z_{4}\right)$

CFT and bootstrap

In more details, the $s-t$ conformal bootstrap equation is

$$
\begin{equation*}
\sum_{k}\left(C_{\sigma \sigma}^{k}\right)^{2} \mathcal{F}_{\Delta_{k}, s_{k}}^{z_{1} z_{2}, z_{3} z_{4}}(u, v)=\sum_{k}\left(C_{\sigma \sigma}^{k}\right)^{2} \mathcal{F}_{\Delta_{k}, s_{k}}^{z_{1} z_{3}, z_{2} z_{4}}(v, u) \tag{13}
\end{equation*}
$$

with $\mathcal{F}_{\Delta_{k}, s_{k}}^{z_{1} z_{2}, z_{3} z_{4}}(u, v)$ the conformal block for the operator k with dimension Δ_{k} and spin s_{k} and

$$
\begin{equation*}
u=\frac{z_{12} z_{34}}{z_{13} z_{24}} ; \quad v=\frac{z_{14} z_{23}}{z_{13} z_{24}} \tag{14}
\end{equation*}
$$

and $z_{12}=z_{1}-z_{2}$, etc.
Each conformal block $\mathcal{F}_{\Delta_{k}, s_{k}}^{z_{1} z_{2}, z_{3} z_{4}}(u, v)$ corresponds to one operator \mathcal{O}_{k} in the OPE with descendants.

CFT and bootstrap

- To solve these equations, one considers

$$
\begin{align*}
\sum_{k}\left(C_{\sigma \sigma}^{k}\right)^{2}\left(\mathcal{F}_{\Delta_{k}, s_{k}}^{z_{1} z_{2}, z_{3} z_{4}}(u, v)-\mathcal{F}_{\Delta_{k}, s_{k}}^{z_{1} z_{3}, z_{2} z_{4}}(v, u)\right) & = \\
\sum_{k} p_{k} f_{k} & =0 \tag{15}
\end{align*}
$$

with $p_{k}>0$.

- One then searches for conditions on Δ_{k}, s_{k} such that the set of f_{k} spans (or not) a positive cone.
- If it spans a positive cone, then eq.(15) can not be satisfied.
- This gives restrictions on the values of Δ_{k}, s_{k}.
- Further details : S. Rychkov, arXiv:1601.05000

Potts models in two dimensions

Potts models in two dimensions

- Potts model is a simple spin model.
- On a regular lattice \mathcal{G}, each site contains a variable σ_{i} which can takes one among Q values and the contribution to the energy for two neighboring sites is $\delta_{\sigma_{i}, \sigma_{j}}$.

$$
\begin{equation*}
\mathcal{H}=-\sum_{<i j>} \delta_{\sigma_{i}, \sigma_{j}} ; \quad Z=\sum_{\sigma_{i}} e^{-\beta \mathcal{H}} \tag{16}
\end{equation*}
$$

- This model can be considered in any dimension.
- In two dimensions, the model is critical for $\beta=\log (1+\sqrt{Q})$. For $Q \leq 4$ it corresponds to a second order phase transition i.e. a CFT.

Potts models in two dimensions

Some well know models are :

- $Q=2$: Ising model, $m=3$ CFT with $c=1 / 2$,
- $Q=3$: 3-state Potts model, $m=5$ CFT with $c=0.8$
- $\quad Q=4$: 4-state Potts model, $m \rightarrow+\infty$ CFT with $c=1.0$
- Other values of m : tricritical Potts model : Potts model with vacancies or dilution.
- Extension for non integer values of Q : Potts random cluster model.

Potts models in two dimensions

- We consider graphs \mathcal{G} build by adding randomly bonds with a probability p. Each graph contributes with the following probability :

$$
\operatorname{Probability}(\mathcal{G})=Q^{\# \text { clusters }} p^{\# \text { bonds }}(1-p)^{\# \text { edges without bond }}(17)
$$

This model is critical for each value of $Q \leq 4$ and for

$$
p_{c}=\frac{\sqrt{Q}}{\sqrt{Q}+1}
$$

- At $p=p_{c}$, local conformal invariance.
- $p_{c}=1-e^{-\beta} \rightarrow$: Fortuin-Kasteleyn clusters.
- $Q=4 \cos ^{2} \pi \gamma^{2}, c=1-6\left(\gamma-\frac{1}{\gamma}\right)^{2},(|\gamma| \leq 1)$
- For $Q=2,3,4$ corresponds the spin models $\sigma_{i}=1, \cdots, Q$.

Potts models in two dimensions

Computation of correlation function is done by the construction of random cluster :

- $\left\langle\sigma\left(z_{1}\right) \sigma\left(z_{2}\right)\right\rangle=\operatorname{Probability}\left(z_{1} \sim z_{2}\right)$ with $\operatorname{Probability}\left(z_{1} \sim z_{2}\right)$ the probability that z_{1} and z_{2} are in the same random cluster.
- $\left\langle\sigma\left(z_{1}\right) \sigma\left(z_{2}\right) \sigma\left(z_{3}\right)\right\rangle=\operatorname{Probability}\left(z_{1} \sim z_{2} \sim z_{3}\right)$. Delfino, Viti (2010) and Delfino, Picco, Santachiara and Viti (2013).
- $\left\langle\sigma\left(z_{1}\right) \sigma\left(z_{2}\right) \sigma\left(z_{3}\right) \sigma\left(z_{4}\right)\right\rangle=\operatorname{Probability}\left(z_{1} \sim z_{2} \sim z_{3} \sim z_{4}\right)$? More complicated than that. For that case, we can have factorizations: $\left(z_{1} \sim z_{2}\right)$ and $\left(z_{3} \sim z_{4}\right)$ or $\left(z_{1} \sim z_{3}\right)$ and $\left(z_{2} \sim z_{4}\right)$, etc, which can also contribute.
For example, for $Q=2$ with $\sigma= \pm 1,\left\langle\sigma\left(z_{1}\right) \sigma\left(z_{2}\right) \sigma\left(z_{3}\right) \sigma\left(z_{4}\right)\right\rangle$ will get a contribution from $\sigma\left(z_{1}\right)=1, \sigma\left(z_{2}\right)=1, \sigma\left(z_{3}\right)=1, \sigma\left(z_{4}\right)=1$ which will be the same as from $\sigma\left(z_{1}\right)=1, \sigma\left(z_{2}\right)=1, \sigma\left(z_{3}\right)=-1$, $\sigma\left(z_{4}\right)=-1$

Potts models in two dimensions

- In general, we have to consider the four types of clusters (Delfino and Viti, 2010, 2011)

$$
\begin{aligned}
& P_{0}: z_{1} \sim z_{2} \sim z_{3} \sim z_{4} ; \quad P_{1}: z_{1} \sim z_{2} \text { and } z_{3} \sim z_{4} \\
& P_{2}: z_{1} \sim z_{4} \text { and } z_{2} \sim z_{3} ; \quad P_{3}: z_{1} \sim z_{3} \text { and } z_{2} \sim z_{4}
\end{aligned}
$$

- For the Q Potts models, the "ordinary" four point correlation function is

$$
\left\langle\sigma\left(z_{1}\right) \sigma\left(z_{2}\right) \sigma\left(z_{3}\right) \sigma\left(z_{4}\right)\right\rangle \simeq P_{0}+\frac{(Q-1)}{Q^{2}-3 Q+3}\left(P_{1}+P_{2}+P_{3}\right)(18)
$$

up to some normalization (see later).

Potts models in two dimensions

Potts models in two dimensions

Potts models in two dimensions

We can consider the special limit with $z_{1} \rightarrow z_{2}$ and $z_{3} \rightarrow z_{4}$ while z_{1} is very far from z_{3}.

- $\quad P_{0}$ will go to the limit $A_{2}\left(z_{1}, z_{2}\right) A_{2}\left(z_{3}, z_{4}\right) \times A_{2}\left(z_{1}, z_{3}\right)$

So in the limit $\left|z_{1}-z_{2}\right|=\left|z_{3}-z_{4}\right|=a$ (the lattice spacing), we will get

$$
\begin{equation*}
P_{0}(z) \simeq A_{2}^{2} z^{-2 \Delta} \tag{19}
\end{equation*}
$$

with A_{2} the normalization of the two point correlation function (and $z=\left|z_{1}-z_{3}\right|$. Different from the z used later on).

- In the same limit, we then expect

$$
\begin{equation*}
P_{1}(z) \simeq A_{2}^{2}\left(1-z^{-2 \Delta}\right) \tag{20}
\end{equation*}
$$

The first term can be interpreted like the presence of the identity operator.

Potts models in two dimensions

- Difficult to predict for $P_{2}(z)$. But it will be very small !!!
- For $P_{3}(z)$, we also expect a small exponent since in the limit of small distance $z_{1}-z_{2}$ and $z_{3}-z_{4}$, the two clusters must not touch. One can expect that it is related to the some boundary operator.
- Note also that in this limit, we can also fixe the normalization (on the lattice) of eq.(20) :

$$
\begin{align*}
\left\langle\sigma\left(z_{1}\right) \sigma\left(z_{2}\right) \sigma\left(z_{3}\right) \sigma\left(z_{4}\right)\right\rangle & =\mathcal{N}\left(P_{0}+\frac{(Q-1)}{Q^{2}-3 Q+3}\left(P_{1}+P_{2}+P_{3}\right)\right) \\
& =A_{2}^{2} \tag{21}
\end{align*}
$$

and then the normalization on the lattice is chosen such that (Identity is normalized to one in CFT!).

$$
\begin{equation*}
\mathcal{N}=\frac{Q^{2}-3 Q+3}{Q-1} \times \frac{1}{A_{2}^{2}} \tag{22}
\end{equation*}
$$

Potts models in two dimensions

First Numerical results

- We expect the general behaviour (after changing the normalisation)

$$
\begin{align*}
\left\langle\sigma\left(z_{1}\right) \sigma\left(z_{2}\right) \sigma\left(z_{3}\right) \sigma\left(z_{4}\right)\right\rangle \simeq & \left|z_{12}\right|^{-4 \Delta_{\sigma}}\left|z_{34}\right|^{-4 \Delta_{\sigma}} \\
& \left(1+\sum_{i} z^{2 \Delta_{i}} F_{i}(z)+\cdots\right) \tag{23}
\end{align*}
$$

with $z=\frac{z_{12} z_{34}}{z_{13} z_{24}}$. Δ_{σ} is the conformal dimension (the physical dimension is $2 \Delta_{\sigma}=1 / 8$ for (sing).

- In the following, we always remove the trivial part $\left|z_{12}\right|^{-4 \Delta_{\sigma}}\left|z_{34}\right|^{-4 \Delta_{\sigma}}$.
- We measure separately $P_{0}, P_{1}, P_{2}, P_{3}$. We then fit them to the previous form looking for the smallest values for Δ_{i}.

Potts models in two dimensions

- We obtain, for all values of Q,

$$
\begin{equation*}
P_{0} \simeq \alpha_{0} z^{2 \Delta_{\sigma}}(1+\cdots)+z^{\Delta_{2}} \tag{24}
\end{equation*}
$$

and Δ_{2} is large. In particular, there is no identity. This is in agreement with the previous arguments.

- Again, for all values of Q, we obtain

$$
\begin{equation*}
P_{1} \simeq 1-\alpha_{0} z^{2 \Delta_{\sigma}}(1+\cdots)+\cdots \tag{25}
\end{equation*}
$$

Here, we obtain the same constant α_{0} !!! This is also in agreement with the previous arguments.

- $\quad P_{2}$ is small, difficult to fit
- $P_{3} \simeq r^{2 \Delta_{i}}(1+\cdots)$ with $2 \Delta_{i} \simeq 1.5$ large.

Potts models in two dimensions

Figure 1: Data for $Q=3$ Potts model

Potts models in two dimensions

- We can compare with simple models: Ising model or $Q=2$.

$$
\begin{equation*}
\sigma \sigma \simeq 1+\phi_{\epsilon} \tag{26}
\end{equation*}
$$

So we will obtain

$$
\begin{align*}
\left\langle\sigma\left(z_{1}\right) \sigma\left(z_{2}\right) \sigma\left(z_{3}\right) \sigma\left(z_{4}\right)\right\rangle & \simeq\langle 11\rangle+\left\langle\phi_{\epsilon} \phi_{\epsilon}\right\rangle \\
& \simeq 1+z+\cdots \\
& =P_{0}+P_{1}+P_{2}+P_{3} \tag{27}
\end{align*}
$$

So the spin terms from P_{0} and P_{1} cancel each other !

- $Q=3$

$$
\begin{equation*}
\sigma \sigma \simeq 1+\sigma+\phi_{\epsilon}+\phi_{X}+\phi_{Y}+\phi_{Z} \tag{28}
\end{equation*}
$$

and then

$$
\begin{align*}
\left\langle\sigma\left(z_{1}\right) \sigma\left(z_{2}\right) \sigma\left(z_{3}\right) \sigma\left(z_{4}\right)\right\rangle & \simeq 1+\alpha_{0} / 3 z^{2 \Delta_{\sigma}}+\cdots \\
& =P_{0}+(2 / 3)\left(P_{1}+P_{2}+P_{3}\right) \tag{29}
\end{align*}
$$

Potts models in two dimensions

- $\quad Q=1$

$$
\begin{equation*}
\left\langle\sigma\left(z_{1}\right) \sigma\left(z_{2}\right) \sigma\left(z_{3}\right) \sigma\left(z_{4}\right)\right\rangle=P_{0} \simeq \alpha_{0} r^{2 \Delta_{\sigma}} \tag{30}
\end{equation*}
$$

so no more identity !

- Having no identity is puzzling at first. Indeed, in the usual bootstrap, one always consider

$$
\begin{equation*}
\sigma \sigma \simeq 1+\sum_{i} C_{\sigma \sigma}^{i} \varphi_{i} \tag{31}
\end{equation*}
$$

which corresponds to saying $C_{\sigma \sigma}^{0}=1$ or equivalently saying that

$$
\begin{equation*}
\left\langle\sigma\left(z_{1}\right) \sigma\left(z_{2}\right)\right\rangle \simeq\left|z_{1}-z_{2}\right|^{-4 \Delta} \tag{32}
\end{equation*}
$$

Conformal bootstrap for the Potts models

- Global conformal symmetry:

$$
P_{\sigma}\left(\left\{z_{i}\right\}\right)=\left|z_{1}-z_{3}\right|^{-4 \Delta_{\sigma}}\left|z_{2}-z_{4}\right|^{-4 \Delta_{\sigma}} P_{\sigma}(\underbrace{\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}}_{\equiv z})
$$

- Symmetry under point permutations

$$
\begin{aligned}
& P_{0}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=P_{0}\left(z_{1}, z_{3}, z_{2}, z_{4}\right)=P_{0}\left(z_{1}, z_{3}, z_{4}, z_{2}\right) \\
& P_{1}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=P_{2}\left(z_{1}, z_{3}, z_{2}, z_{4}\right)=P_{3}\left(z_{1}, z_{3}, z_{4}, z_{2}\right)
\end{aligned}
$$

Conformal bootstrap for the Potts models

Mixing global conformal invariance and permutation symmetry

channel	limit	permutation	Cross ratio
s	$z_{1} \rightarrow z_{2}$	id	z
t	$z_{1} \rightarrow z_{4}$	(13)	$1-z$
u	$z_{1} \rightarrow z_{3}$	(14)	$z /(z-1)$

Conformal bootstrap for the Potts models

We have the following relation for the P 's :

$$
\begin{gathered}
P_{0}(z) \underbrace{=}_{s-t \text { symmetry }} P_{0}(1-z) \underbrace{=}_{s-u \text { symmetry }}|1-z|^{-4 \Delta_{\sigma}} P_{0}\left(\frac{z}{z-1}\right) \\
P_{1}(z)=P_{3}(1-z)=|1-z|^{-4 \Delta_{\sigma}} P_{1}\left(\frac{z}{z-1}\right) \\
P_{2}(z)=P_{2}(1-z)=|1-z|^{-4 \Delta_{\sigma}} P_{3}\left(\frac{z}{z-1}\right) \\
P_{0}: \square \quad P_{1}:-\quad P_{2}: \searrow \quad P_{3}:| |
\end{gathered}
$$

Conformal bootstrap for the Potts models

We start from the variable z :

$$
\begin{equation*}
z=\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)} \tag{33}
\end{equation*}
$$

and we exchange z_{1} with z_{3} :

$$
\begin{aligned}
w & =\frac{\left(z_{3}-z_{2}\right)\left(z_{1}-z_{4}\right)}{\left(z_{3}-z_{1}\right)\left(z_{2}-z_{4}\right)}=-\frac{\left(z_{3}-z_{2}\right)\left(z_{1}-z_{4}\right)}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)} \\
& =-\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{2}\right)}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}-\frac{\left(z_{2}-z_{4}\right)\left(z_{3}-z_{2}\right)}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)} \\
& =-\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}-\frac{\left(z_{1}-z_{2}\right)\left(z_{4}-z_{2}\right)}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}-\frac{\left(z_{2}-z_{4}\right)\left(z_{3}-z_{2}\right)}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)} \\
& =-z+\frac{\left(z_{1}-z_{2}\right)}{\left(z_{1}-z_{3}\right)}-\frac{\left(z_{3}-z_{2}\right)}{\left(z_{1}-z_{3}\right)}=-z+\frac{\left(z_{1}-z_{2}\right)}{\left(z_{1}-z_{3}\right)}+\frac{\left(z_{2}-z_{3}\right)}{\left(z_{1}-z_{3}\right)} \\
& =1-z
\end{aligned}
$$

Conformal bootstrap for the Potts models

We look for functions R_{σ} that can be related to the P_{σ} :

$$
R_{0} \propto P_{0}+\mu_{s}\left(P_{1}+P_{2}+P_{3}\right), \quad R_{1} \propto P_{0}+\mu_{s s}\left(P_{2}+P_{3}\right)+\mu P_{1}, \ldots
$$

The most general form consistent with local conformal symmetry

$$
\begin{equation*}
R_{\sigma}=\sum_{(\Delta, \bar{\Delta}) \in \mathcal{S}} D_{\Delta, \bar{\Delta}} \mathcal{F}_{\Delta}\left(\left\{z_{i}\right\}\right) \mathcal{F}_{\bar{\Delta}}\left(\left\{\bar{z}_{i}\right\}\right) \tag{35}
\end{equation*}
$$

$\mathcal{F}_{\Delta}\left(\left\{z_{i}\right\}\right)$ Virasoro block with $\Delta_{\left(0, \frac{1}{2}\right)}$ primary fields and internal field Δ

Conformal bootstrap for the Potts models

Game rules:

Finding the spectrum \mathcal{S} and the structure constants $D_{\Delta, \bar{\Delta}}$ consistent with R_{σ}.

$$
\text { Ex. } R_{2}(z)=R_{2}(1-z)
$$

$$
\sum_{(\Delta, \bar{\Delta}) \in \mathcal{S}} D_{\Delta, \bar{\Delta}}\left(\mathcal{F}_{\Delta}(z) \mathcal{F}_{\bar{\Delta}}(\bar{z})-\mathcal{F}_{\Delta}(1-z) \mathcal{F}_{\bar{\Delta}}(1-\bar{z})\right)=0
$$

Conformal bootstrap for the Potts models

Guessing the spectrum $\mathcal{S}^{(k)} \ldots$

- We can show that the single-valuedness of correlation functions imposes the following condition on the spectrum

$$
\begin{equation*}
\Delta-\bar{\Delta} \in \frac{1}{2} \mathbb{Z} \tag{37}
\end{equation*}
$$

- An other important result that can be shown : if same spectrum and structure constant in two channels, the spectrum is the same in the third channel if and only if the spectrum is even, i.e.

$$
\begin{equation*}
\Delta-\bar{\Delta} \in 2 \mathbb{Z} \tag{38}
\end{equation*}
$$

Ok for P_{0}. To match the $P_{\sigma}, \sigma=1,2,3$, we have to include also odd spins.

Conformal bootstrap for the Potts models

Our ansatzes

$$
\begin{aligned}
& \Delta_{(r, s)}=\frac{c-1}{12}+\frac{1}{4}\left(r \beta-\frac{s}{\beta}\right)^{2} \\
& \mathcal{S}_{X, Y}=\left\{\left(\Delta_{(r, s)}, \Delta_{(r,-s)}\right)\right\}_{r \in X, s \in Y} \quad \text { with } \quad \mathrm{X} \subset \mathbb{Z}, \mathrm{Y} \subset \frac{1}{2} \mathbb{Z}(40)
\end{aligned}
$$

We considered various spectrum based on $\mathcal{S}_{X, Y}$ and found a good agreement with the bootstrap for R_{1}, R_{2}, R_{3} with the particular case

$$
\begin{equation*}
\mathcal{S}_{2 \mathbb{Z}, \mathbb{Z}+\frac{1}{2}} \tag{41}
\end{equation*}
$$

This spectrum can also be motivated / justified by the following considerations :

Conformal bootstrap for the Potts models

- A first motivation is that the leading state is the spin operator with the dimension $\Delta_{(0,1 / 2)}=\Delta_{\sigma}$
- A second motivation is that such a spectrum was already found for $Q=4$ which is a special case of the Ashkin-Teller model considered by Al. Zamolodchikov (1986).
- Also, fields with dimensions $\Delta_{(0, \mathbb{Z}+1 / 2)}$ correspond to the magnetic series identified by Dotsenko \& Fateev (1984), Saleur (1987) and Delfino (2013).
- The spectrum $\mathcal{S}_{2 \mathbb{Z}, \mathbb{Z}+\frac{1}{2}}$ also appear in the partition functions computed by Di Francesco, Saleur \& Zuber (1987)
- But the main justification, is that it works !!!

Conformal bootstrap for the Potts models

We have found 3 solutions, $R_{i}, i=1,2,3$ which satisfy the conformal bootstrap equations for all the values of Q.

	s	t	u
R_{1}	\mathcal{S}_{0}	$\mathcal{S}_{2 Z, Z+\frac{1}{2}}$	$\mathcal{S}_{2 \mathbb{Z}, \mathbb{Z}+\frac{1}{2}}$
R_{2}	$\mathcal{S}_{2 \mathbb{Z}} \mathbf{Z}+\frac{1}{2}$	$\mathcal{S}_{2 Z, Z, Z}$	\mathcal{S}_{0}
R_{3}	$\mathcal{S}_{2 \mathbb{Z}, \mathbb{Z}+\frac{1}{2}}$	\mathcal{S}_{0}	$\mathcal{S}_{2 \mathbb{Z}, \mathbb{Z}+\frac{1}{2}}$

Here, \mathcal{S}_{0} corresponds to the sector which we have not found yet (but are still looking for ...)

Conformal bootstrap for the Potts models

For instance we found for R_{2} and $Q=1$:

$(r$,	$s)$	$(\Delta$,	$\bar{\Delta})$	$D_{\Delta, \bar{\Delta}}(24)$
$(0$,	$\left.\frac{1}{2}\right)$	$\left(\frac{5}{96}\right.$,	$\left.\frac{5}{96}\right)$	1.0000000000
$(-2$,	$\left.\frac{1}{2}\right)$	$\left(\frac{39}{32}\right.$,	$\left.\frac{7}{32}\right)$	0.0385548052
$(2$,	$\left.\frac{1}{2}\right)$	$\left(\frac{7}{32}\right.$,	$\left.\frac{39}{32}\right)$	0.0385548052
$(0$,	$\left.\frac{3}{2}\right)$	$\left(\frac{77}{96}\right.$,	$\left.\frac{77}{96}\right)$	-0.0212806512
$(-2$,	$\left.\frac{3}{2}\right)$	$\left(\frac{95}{32}\right.$,	$\left.-\frac{1}{32}\right)$	0.0004525024
$(2$,	$\left.\frac{3}{2}\right)$	$\left(-\frac{1}{32}\right.$,	$\left.\frac{95}{32}\right)$	0.0004525024
$(0$,	$\left.\frac{5}{2}\right)$	$\left(\frac{221}{96}\right.$,	$\left.\frac{21}{96}\right)$	-0.0000356379
$(-4$,	$\left.\frac{1}{2}\right)$	$\left(\frac{119}{32}\right.$,	$\left.\frac{55}{32}\right)$	-0.0000029746
$(4$,	$\left.\frac{1}{2}\right)$	$\left(\frac{55}{32}\right.$,	$\left.\frac{11}{32}\right)$	-0.0000029746

Conformal bootstrap for the Potts models

- This is obtained by solving the equation :

$$
\begin{equation*}
\sum_{(\Delta, \bar{\Delta}) \in \mathcal{S}} D_{\Delta, \bar{\Delta}}\left(\mathcal{F}_{\Delta}(z) \mathcal{F}_{\bar{\Delta}}(\bar{z})-\mathcal{F}_{\Delta}(1-z) \mathcal{F}_{\bar{\Delta}}(1-\bar{z})\right)=0 . \tag{42}
\end{equation*}
$$

with the condition $D_{(0,1 / 2),(0,1 / 2)}=1$ (normalization).

- Truncation at the level N in the number of fields.
- Compute the conformal blocks $\mathcal{F}_{\Delta}(z)$ with Zamolodchikov's recursive formula.
- Select $N-1$ random values of z_{i} and solve eq.(42) : $D_{\Delta, \bar{\Delta}}^{N}$
- Repeat the same operation with other set of random values z_{i} and compute the variance other the different results of $D_{\Delta, \bar{\Delta}}^{N}$. If these variances, $c_{\Delta, \bar{\Delta}}$ remains small, it is ok.
- Take the limit $\lim _{N \rightarrow \infty} D_{\Delta, \bar{\Delta}}^{N}$. $N=24$ in the previous results for $R=2, Q=1$.

Conformal bootstrap for the Potts models

Comparison with Monte-Carlo calculations : Linear relations between R_{σ} and P_{i}

$$
\begin{equation*}
R_{\sigma}=\lambda\left(P_{0}+\mu P_{\sigma}\right), \quad(\sigma=1,2,3) \tag{43}
\end{equation*}
$$

q	λ	μ
1.	0.9563	-2.0
1.25	0.9426	-3.32
1.5	0.9281	-5.95
1.75	0.9142	-13.85
2.25	0.8881	9.05
2.5	0.8722	4.46
2.75	0.8555	3.48
3.	0.8385	2.0

Conformal bootstrap for the Potts models

- The parameters λ and μ are obtained by fitting the solution of the bootstrap with combination of the Monte Carlo simulations for the following correlation functions :

$$
\begin{equation*}
\rho^{2 \Delta_{\left(0, \frac{1}{2}\right)}} R_{2}\left(\rho e^{i \theta}, 0, \infty, 1\right) \tag{44}
\end{equation*}
$$

- $Q=1$ for various values of θ. For that case, λ and μ do not depend on θ.
- $\theta=0$ for various values of Q

Conformal bootstrap for the Potts models

Conformal bootstrap for the Potts models

Conformal bootstrap for the Potts models

$$
\theta=\mathbf{0}
$$

Conformal bootstrap for the Potts models

Conformal bootstrap for the Potts models

A series of comments:

- The conformal boostrap solutions match, in the case of $Q=3$ with W_{3} correlation function, and at $Q=4$ with Zamolodchikov solutions for Ashkin-Teller model.
- For $Q=4$, Zamolodchikov also found the fourth solution i.e.

$$
\begin{equation*}
\mathcal{S}_{0}=\mathcal{S}_{2 \mathbb{Z}, \mathbb{Z}} \tag{45}
\end{equation*}
$$

But this does not work in general. We are still looking for such a solution for general Q !!!

- On general grounds, we can expect that the ground state is the identity (i.e. $\Delta=0$) in \mathcal{S}_{0}. This is indeed the case for Zamolodchikov solution for $Q=4$. For other values of $Q, \mathcal{S}_{2 \mathbb{Z}, \mathbb{Z}}$ would contain operators with negative dimension.

Conclusion

- 2D Conformal bootstrap approach provided new four point functions that are in excellent agreement with Monte Carlo results. No logarithmic features so far.
- A continent to explore: i) determine \mathcal{S}_{0}, ii) Liouville $c \leq 1\left(C^{c \leq 1}\right)$ play a role? iii) other probabilities,,,
- Available codes at https://github.com/ribault/bootstrap-2d-Python

