Hydrodynamic Fluctuations in a Hot Medium

Navid Abbasi IPM (Tehran)

0. Outline

First Part

- Relativistic hydro
- Motivation for hydrodynamic chiral transport
- Non_dissipative feature of chiral transport
- Spectrum of chiral hydro modes

Second Part

- Chiral hydro modes from Kinetic theory
- Frame choice and hydro modes

1. Hydrodynamics

Response of the system to perturbations at <u>low energy</u> and <u>Long wave-length</u> limit

Hydro equations:

local conservation equations

$$\partial_{\mu}T^{\mu\nu} = F^{\mu\nu}J_{\nu}$$

 $\partial_{\mu}J^{\mu} = 0$
variables
 $T(x), \ \mu(x), \ u^{\mu}(x)$
 $(u^{\mu}u_{\mu} = -1)$

2. Constitutive Relations

Structure of $T^{\mu\nu}$ and J^{μ} ?

The main idea:

14 unknown fields in terms of 5 fields and their derivatives

$$T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} + p\eta^{\mu\nu} - \eta P^{\mu\alpha}P^{\nu\beta} \left(\partial_{\alpha}u_{\beta} + \partial_{\beta}u_{\alpha}\right) - \left(\zeta - \frac{2}{3}\eta\right)P^{\mu\nu}\partial_{.u}u^{\mu} = nu^{\mu} - \sigma TP^{\mu\nu}\partial_{\nu}\left(\frac{\mu}{T}\right) + \sigma E^{\mu}$$

3. Dual gravity picture?

Early studies:

Membrane Paradigm: Fluid on the horizon

[Damur; Thorne Price Macdonald 1970's]

New viewpoint:

Fluid–Gravity Duality: Fluid on the boundary

[Bhattacharyya Hubeny Minwalla Rangamani 2007]

4. Extensions of Fluid–Gravity:

- 1. Forced Fluid
- 2. Non-Relativistic Fluid
- 3. (Chirally) Charged Fluid

[Bhattacharyya Loganayagam Minwalla Nampuri Trividi 2007]

[Bhattacharyya Minwalla Wadia 2008]

[Erdmenger Haack Kaminski Yarom 2008]

[Banerjee Bhattacharyya Bhattacharyya Dutta Loganayagam Surowka 2008]

$$S = \frac{1}{16\pi G_5} \int \sqrt{-g_5} \left[R + 12 - F_{AB}F^{AB} - \frac{4\kappa}{3} \epsilon^{LABCD}A_L F_{AB}F_{CD} \right]$$
anomaly

 $T_{\mu\nu} = p(\eta_{\mu\nu} + 4u_{\mu}u_{\nu}) - 2\eta\sigma_{\mu\nu} + \dots$ $J_{\mu} = n \ u_{\mu} - \mathfrak{D} \ P^{\nu}_{\mu}\mathcal{D}_{\nu}n + \xi \ l_{\mu} + \dots$ $Vorticity: \quad l^{\mu} \equiv \epsilon^{\nu\lambda\sigma\mu}u_{\nu}\partial_{\lambda}u_{\sigma}$

5. Macroscopic Manifestation of Anomalies

Motivated by Fluid / Gravity:

adding parity violating terms to hydro:

$$J^{\mu} = n u^{\mu} - \sigma T P^{\mu\nu} \partial_{\nu} \left(\frac{\mu}{T}\right) + \sigma E^{\mu} + \xi \omega^{\mu} + \xi_{B} B^{\mu}$$

 $\begin{aligned} \partial_{\mu}j^{\mu} &= CE^{\mu}B_{\mu}, & \text{[Son Surowka 2009]} \\ \partial_{\mu}T^{\mu\nu} &= F^{\nu\lambda}j_{\lambda} & \text{[Kharzeev Yee ; Neiman Oz 2011]} \\ & \text{[Jensen Loganayagam Yarom 2012]} \end{aligned}$

In Landau–Lifhitz frame

$$\begin{split} \xi &= \mathcal{C}\mu^2 \left(1 - \frac{2}{3} \frac{\bar{n}\mu}{\bar{\epsilon} + \bar{p}} \right) + \mathcal{D}T^2 \left(1 - \frac{2\bar{n}\mu}{\bar{\epsilon} + \bar{p}} \right) \\ \xi_B &= \mathcal{C}\mu \left(1 - \frac{1}{2} \frac{\bar{n}\mu}{\bar{\epsilon} + \bar{p}} \right) - \frac{\mathcal{D}}{2} \frac{\bar{n}T^2}{\bar{\epsilon} + \bar{p}} \end{split}$$

6. Chiral transport is <u>non-dissipative</u>:

Ohm Law:	$oldsymbol{J}=\sigmaoldsymbol{E}$	dissipative
	(-) (-)(+)	

London 2nd eq.:

$$\frac{\partial \boldsymbol{J}_s}{\partial t} = \sigma_s \boldsymbol{E}$$
(+) (+)(+)

non-dissipative

Transport in system of Single right-handed fermions:

 $J = \xi_B B$

non-dissipative

?

7. A more realistic model :

Chiral hydrodynamics with both vector and axial currents:

$$\partial_{\mu}T^{\mu\nu} = F^{\nu\lambda}J_{\lambda}$$

 $\partial_{\mu}J^{\mu} = 0$ with
 $\partial_{\mu}J^{\mu}_{5} = \mathcal{C}E_{\mu}B^{\mu}$

$$T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} + p \eta^{\mu\nu}$$
$$J^{\mu} = nu^{\mu} + \xi \,\omega^{\mu} + \xi_{B}B^{\mu}$$
$$J^{\mu}_{5} = n_{5}u^{\mu} + \xi_{5}\,\omega^{\mu} + \xi_{B5}B^{\mu}$$

[Gao Liang Pu Wang Wang 2012]

[Landsteiner Megias Pena-Benitez 2013]

$$\begin{aligned} \xi &= 2\mathcal{C} \left(\mu \mu_5 - \frac{n\mu_5}{3w} \left(3\mu^2 + \mu_5^2 \right) \right) - 2\mathcal{D} \frac{n\mu_5}{w} T^2 \\ \xi_5 &= \mathcal{C} \left(\mu^2 + \mu_5^2 - \frac{2n_5\mu_5}{3w} \left(3\mu^2 + \mu_5^2 \right) \right) + \mathcal{D} \left(1 - \frac{2n_5\mu_5}{w} \right) T^2 \\ \xi_B &= \mathcal{C} \, \mu_5 \left(1 - \frac{n\mu}{w} \right) \\ \xi_{5B} &= \mathcal{C} \, \mu \left(1 - \frac{n_5\mu_5}{w} \right) \end{aligned}$$

8. Hydro excitations in a chiral system:

Long-wavelength excitations around equilibrium:

$$u^{\mu} = \left(1, \ \boldsymbol{\Omega} \times \boldsymbol{x}\right) \qquad \boldsymbol{\Omega} r \ll 1,$$

$$T = Const., \ \mu = Const., \ \mu_5 = Const.$$

$$\boldsymbol{B} = Const.$$

9. Fluid coupled to weak magnetic field

$$\begin{bmatrix} -i\alpha_{1}\omega & ik_{j} & -i\alpha_{2}\omega & -i\alpha_{3}\omega \\ i\alpha_{1}v_{s}^{2}k^{i} & -i\omega\delta_{j}^{i} - i\frac{\xi}{2\bar{w}}\left(\boldsymbol{B}\cdot\boldsymbol{k}\delta_{j}^{i} - B_{j}k^{i}\right) - \frac{\bar{n}}{\bar{w}}\epsilon^{i}{}_{jl}B^{l} & i\alpha_{2}v_{s}^{2}k^{i} & i\alpha_{3}v_{s}^{2}k^{i} \\ -i\beta_{1}\omega + \left(\frac{\partial\xi_{B}}{\partial T}\right)i\boldsymbol{B}\cdot\boldsymbol{k} & \frac{\bar{n}}{\bar{w}}ik_{j} - \frac{\xi_{B}}{\bar{w}}i\omega B_{j} & -i\beta_{2}\omega + \left(\frac{\partial\xi_{B}}{\partial\mu}\right)i\boldsymbol{B}\cdot\boldsymbol{k} & -i\beta_{3}\omega + \left(\frac{\partial\xi_{B}}{\partial\mu_{5}}\right)i\boldsymbol{B}\cdot\boldsymbol{k} \\ -i\gamma_{1}\omega + \left(\frac{\partial\xi_{5B}}{\partial T}\right)i\boldsymbol{B}\cdot\boldsymbol{k} & \frac{\bar{n}_{5}}{\bar{w}}ik_{j} - \frac{\xi_{5B}}{\bar{w}}i\omega B_{j} & -i\gamma_{2}\omega + \left(\frac{\partial\xi_{5B}}{\partial\mu}\right)i\boldsymbol{B}\cdot\boldsymbol{k} & -i\gamma_{3}\omega + \left(\frac{\partial\xi_{5B}}{\partial\mu_{5}}\right)i\boldsymbol{B}\cdot\boldsymbol{k} \end{bmatrix}$$

6 linear coupled equations give **6** hydro modes:

1,2: Chiral-Magnetic-Heat wave:3,4: Ordinary sound wave:5,6: Chiral Alfven wave:

$$\begin{split} \omega_{1,2}(k) &= -\frac{\mathcal{A}_1 \pm \sqrt{\mathcal{A}_1^2 - \mathcal{A}_2 \mathcal{E}}}{\mathcal{E}} \mathbf{B}.\mathbf{k}\\ \omega_{3,4}(k) &= \pm c_s k\\ \omega_{5,6}(k) &= \pm \frac{\xi}{2w} Bk \end{split}$$

10. Chiral – Magnetic–Heat Wave

Equation of state
$$\epsilon = 3p = \frac{7\pi^2}{60}T^4 + \frac{1}{2}(\mu^2 + \mu_5^2)T^2 + \frac{1}{4\pi^2}(\mu^4 + 6\mu^2\mu_5^2 + \mu_5^4)$$

[N.A Allahbakhshi Davody Taghavi 2016]

11. CMHW in QGP:

It is well_understood that the QGP produced in HIC in initially non_chiral: $\mu_5 = 0$

12. **Rotating** Fluid coupled to weak magnetic field

Scalar sector: mixed chiral-magnetic-vortical-heat wave

Out of equilibrium dynamics from Kinetic theory

In a system of classical particles with rare collisions the dynamics of distribution function is given by:

Kinetic equation:

$$\frac{\partial n_{\mathbf{p}}}{\partial t} + \dot{\mathbf{x}} \cdot \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{x}} + \dot{\mathbf{p}} \cdot \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{p}} = I_{coll} \{ n_{\mathbf{p}} \}$$

Hamilton equations:

$$\dot{\mathbf{x}} = \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{p}} ,$$
$$\dot{\mathbf{p}} = e\mathbf{E} + e\dot{\mathbf{x}} \times \mathbf{B},$$

14. In a system of Weyl Fermions

Particles interact with the Berry monopole located at the origin of momentum space

[Stephanov Yee 2012]

[Son Yamamoto 2012]

$$\dot{\mathbf{x}} = \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{p}} + \dot{\mathbf{p}} \times \mathbf{\Omega}_{\mathbf{p}}$$
$$\dot{\mathbf{p}} = e\mathbf{E} + e\,\dot{\mathbf{x}} \times \mathbf{B},$$

$$\Omega_{\mathbf{p}} = \boldsymbol{\nabla} \times \mathbf{A}_{\mathbf{p}} = \lambda \, e \frac{\mathbf{p}}{\mathbf{p}^3}$$

CKT
$$\frac{\partial n_{\mathbf{p}}}{\partial t} + \dot{\mathbf{x}} \cdot \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{x}} + \dot{\mathbf{p}} \cdot \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{p}} = I_{coll} \{n_{\mathbf{p}}\}$$

15. Hydro modes from CKT

For slowly-varying macroscopic fields $\beta(x), \boldsymbol{u}(x), \mu_{R,L}(x)$ we expand the distribution function around the thermo distribution:

$$\tilde{n}_{\mathbf{p}}^{(\lambda,e)} = \frac{1}{e^{\beta(\epsilon(\mathbf{p}) - e\mu_{\chi})} + 1}.$$

to find the linearized equations:

$$M_{ab} \ \delta \phi_a(\omega, \boldsymbol{k}) = 0$$

with: $\phi_a(x) = (\beta(x), \pi(x), \mu_R(x), \mu_L(x))$

16. Comparison between Hydro in LL and CKT

relativistic hydro

For a fluid of single right-handed fermions at $\mu = 0$:

kinetic theory

[N.A Taghinavaz Naderi?]

Type of mode	Chiral Kinetic Theory	Landau-lifshitz
CMHW	$v_{1,2}^{CKT}(k) = -\left(\mathcal{A}_1 \pm \sqrt{\mathcal{A}_2^2 - 4\mathcal{A}_3\mathcal{E}}\right) \frac{1}{2\mathcal{E}} B$	$v_{1,2}^{LL}(k) = -\left(\mathbf{A}_1 \pm \sqrt{\mathbf{A}_2^2 - 4\mathbf{A}_3 \mathcal{E}}\right) \frac{1}{2\mathcal{E}} B$
Custard Sound	$v_{3,4}^{CKT} = \pm \frac{1}{\sqrt{3}} + \frac{\chi_R - \chi_L}{6 w} B k,$	$v_{3,4}^{LL} = \pm \frac{1}{\sqrt{3}}$
CAW	$v_{5,6}^{CKT} = \frac{(n_R + n_L)(n_R - n_L)}{2w^2} B$	$v_{4,5}^{LL} = \left(\frac{(n_R - n_L)(\mu_R - \mu_L)}{2w^2} - \frac{\chi_R - \chi_L}{4w}\right) B$

17. Resolution of the differnce

Energy flow in the RF of the fluid in Landau-Lifshitz Frame

$$T_{LL}^{i0} = 0.$$

Energy flow computed in the RF of the fluid in **CKT**

$$T_{CKT}^{i0} = \frac{\bar{\boldsymbol{\chi}}_R - \bar{\boldsymbol{\chi}}_L}{4} \mathbf{B}_i$$

Perhaps these frames are Lorentz frames related to each other with:

[N.A Taghinavaz Naderi?]

$$\boldsymbol{v}_{boost} = rac{ar{\boldsymbol{\chi}}_R - ar{\boldsymbol{\chi}}_L}{4w} \, \mathbf{B}$$

18. The idea is true

By making the boost:

$$v_i^{CKT} \rightarrow \frac{v_i^{CKT} - v_{boost}}{1 - v_i^{CKT} v_{boost}} = v_i^{LL}$$

This means that:

in the absence of dissipation Hydrodynamic modes, are not frame invarinat!

They are in fact frame covariant!

19. In the absence of dissipation

20. How to get the same result from these two frames?

Thermodynamic (Lab)	Landau-Lifshitz.	Boost
$u^{\mu} = (1, 0)$	$u^{\mu} = (1, 0)$	$v_{LL} = rac{v_{Lab} - ilde{v}_{rel}}{1 - v_{Lab} ilde{v}_{rel}}$ $ ilde{v}_{rel} = -rac{\sigma^{\mathcal{B}}_{\epsilon}B + \sigma^{\mathcal{V}}_{\epsilon}\omega}{m}$
$u^{\mu} = (1, 0)$	$u^{\mu} = (1, \tilde{\boldsymbol{v}}_{rel}), u^{\mu}u_{\mu} = -1 + O(\tilde{\boldsymbol{v}}_{rel}^2)$	$v_{LL} = v_{Lab}$

Physical frame, consistent with Vilenkin 89 results. "No-drag frame: [Stephanov Yee 2015]"

21. Consequences:

1- In single chirality fluid in the Lab frame

CAW does not exist!

[Yamamoto 2105, PRL]

[N.A Davody Rezaei Hejazi 2016]

2- In QCD type fluid: CAW does exist: $v_{CAW} = \left(C \mu \mu_5 - \frac{2n}{3w} C \mu_5 (3\mu^2 + \mu_5^2) - \frac{2n}{w} DT^2 \right) B$ $C = \frac{1}{2\pi^2}, \quad D = \frac{1}{6}$

Gauge-gravitational anomaly in QGP.

22. Open questions

1. Non-hydro modes from chiral realtivistic hydrodynamic?

[Romatschke 2017]

2. Non-hydro modes from CKT?

[Romatschke 2015]

3. The full spectrum of chiral magneto hydrodynamics?

Thank you