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Charged particle beams  

 Particles traveling in nearly the same direction with nearly the same energy. 

 𝜎𝐸𝑘 ≪ 𝐸𝑘 

 𝑝𝑥 , 𝑝𝑦 ≪ 𝑝𝑧 

 

 

 

 

 

 

 

 

Longitudinal direction & Transverse Plane 

 Independent motion. ⟹ 3D⟶2D+1D 

 Acceleration vs Beam Control. 
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The goal of a Beam Dynamics study  

 To study the beam behavior under the influence of electromagnetic fields of 

accelerator components (magnets and cavities and …) and the beam itself. 

 Maxwell's equations:  

𝜵. 𝑬 = 𝜌 𝜀0                        
𝜵. 𝑩 = 0                           
𝜵 × 𝑬 = −𝜕𝑩 𝜕𝑡             
𝜵 × 𝑩 = 𝜇0 𝐽 + 𝜕𝑬 𝜕𝑡 

 

 Lorentz force: 𝑑𝑷 𝑑𝑡 = 𝑞 𝑬 + 𝒗 × 𝑩  

 Determination of the required array of the electromagnetic fields 

(specification of the accelerator components). 

                                         
             

 Beam Dynamics Design 

Perquisites 

 Classical mechanics (including Hamiltonian dynamics) 

 Electromagnetic theory. 

 Special relativity. 

 Statistical mechanics (only for Space charge dynamics)  



2. Electrostatic vs RF acceleration 
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Electrostatic acceleration limitations  

 Breakdown effect 

 Highest voltage ever: ~12 MV 

 Large and expensive machines. 

 

 

 

 

 

 

 

Holifield Heavy Ion Accelerator, ORNL 
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Electrostatic acceleration limitations  

 Non-repeatable 

 Electrostatic forces are conservative! Work done by a conservative force on a 

particle in a closed loop is zero! 

 

 

 

 

 

 

 

 Solution: Electromagnetic waves confined in cavities. 

 The frequency range determines the cavity dimension. 
              

 Radio Frequency (RF) acceleration 
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RF acceleration and the concept of bunching  

 Sinusoidal field: Alternative acceleration and deceleration depending on the 

arrival time. 

 

 

 

 

 Bunched beam 

crest 

zero crossing 



3. RF cavities 
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RF cavities  

 An RF cavity is simply an empty space 

surrounded by metallic walls in which 

the electromagnetic waves resonate. 

 In accelerators, one usually uses cavities 

with axisymmetric geometries.  

 

 Cavity modes 

 Different solutions to Maxwell’s equations for any specific boundary condition.  

 The excited mode depends on the cavity geometry and the frequency. 

 Transverse electric (TE), transverse magnetic (TM), transverse electric and 

magnetic (TEM) modes.  

 transverse magnetic (TM) or E mode is characterized by a longitudinal electric 

field (𝐸𝑧). 
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RF cavities  

 Example:  

𝑇𝑀 01 mode in a cylindrical waveguide [1] (the lowest frequency mode). 

𝐸𝑧 = 𝐸0𝐽0 𝑘𝑐𝑟 𝑒−𝑖𝑘𝑧𝑧𝑒𝑖𝜔𝑡                    

𝑘 = 𝜔𝑐/𝑐                  
𝑘𝑐 = 𝜔𝑐/𝑐 = 𝑝01/𝑏

𝑘𝑧
2 = 𝑘2 − 𝑘𝑐

2           

  

 

𝐸𝑧 =  𝐸0 cos 𝜃      ⟶      Longitudinal field on axis  

𝜃 = 𝑘𝑧𝑧 − 𝜔𝑡      ⟶      RF phase seen by the particle    

Synchronization condition: 
𝑑𝜃

𝑑𝑡
= 0 ⟹ 𝑣 =

𝜔

𝑘𝑧
 

 

𝑣𝑝ℎ = 𝑐
𝜔

𝜔2−𝜔𝑐
2
> 𝑐  

 

[1] D.M. Pozar, “Microwave Engineering”, third edition, John Wiley & Sons, 2005 (chapter 3). 

first root of 𝐽0 𝑥  

definition of  

phase velocity,𝑣𝑝ℎ 
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Disc loaded structure; Slowing down the waves!  

 Introducing some obstacles, e.g. irises and providing a periodic structure. 

 A perturbed version of the cylindrical waveguide 

 

 

 

 

𝐸𝑧 = 𝐸𝑑 𝑟, 𝑧 𝑒−𝑖𝑘0𝑧𝑒𝑖𝜔𝑡          𝑟 < 𝑎  

Fourier expansion of 𝐸𝑑 𝑟, 𝑧  and applying Maxwell’s equations 

            
      𝐸𝑧 𝑟, 𝑧, 𝑡 = 𝐸0 𝐶𝑛𝐽0 𝐾𝑛𝑟 𝑒𝑖 𝜔𝑡−𝑘𝑛𝑧∞

𝑛=−∞                 
𝑘𝑛 = 𝑘0 + 2𝜋𝑛/𝑑

𝐾𝑛
2 = 𝜔/𝑐 2 − 𝑘𝑛

2  

Periodic function of z 

Infinite number of waves with different phase 

velocities (called Space Harmonics). 
𝑣𝑝ℎ,𝑛 =

𝜔

𝑘𝑛
=

𝜔

𝑘0 + 2𝜋𝑛/𝑑
  ⇒ 
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Structure modes  

 Slater theorem 

      ⟹ dispersion relation [2]: 

       𝜔 =
𝑝01𝑐

𝑏
1 + 𝜅 1 − cos 𝑘𝑛𝑑 𝑒−𝛼ℎ                    

𝜅 =
4𝑎3

3𝜋𝐽1
2 𝑝01 𝑏2𝑑

≪ 1

𝛼 =
𝑝01

𝑎

2
−

𝜔

𝑐

2
 

 

 

 

 Phase advance per cell 

     𝜓 = 𝑘0𝑑 ⟶ 0, 𝜋        
𝜋

2
,
2𝜋

3
, 𝜋, … 

[2] T.P. Wangler et al., “RF Linear Accelerator”, 2nd edition, John Wile & Sons, 2008 (chapter 3). 

Principle wave (𝑛 = 0) 

Structure modes 

𝑣𝑝ℎ,0 =
𝜔

𝑘0
=

𝜔

𝜓
𝑑 ⟶ adjustable phase velocity 
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Traveling wave (TW) vs Standing wave (SW) cavities  

 TW structure 

 𝐸𝑧
𝑇𝑊

𝑟, 𝑧, 𝑡 = ℇ𝑧
𝑇𝑊

𝑟, 𝑧 𝑒𝑖 𝑘𝑧−𝜔𝑡  

 Short filling time (< 1𝜇𝑠) . 

 

 

 SW structure 

 𝐸𝑧
𝑆𝑊

𝑟, 𝑧, 𝑡 = ℇ𝑧
𝑆𝑊

𝑟, 𝑧 𝑒𝑖𝜔𝑡      (Fixed nodes) 

 Longer filling time (~10𝑠 𝜇𝑠) . 



4. Longitudinal beam parameters 
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Longitudinal phase space  

 Kinetic energy vs phase(𝜔𝑡) 

 At a longitudinal position (z) 

 z vs t 

 

 Beam parameters: 

 rms bunch length: 

      𝜎𝜑 = 𝜑 − 𝜑 2   

 rms energy spread: 

      𝜎𝐸𝑘 = 𝐸 − 𝐸 2   

 rms longitudinal emittance: ⟶ a measure of the area of phase space ellipse. 

      𝜎𝐸𝑘 = 𝐸 − 𝐸 2 𝜑 − 𝜑 2 − 𝐸 − 𝐸 𝜑 − 𝜑   
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Longitudinal phase space  

 Convergent phase space: ∆𝜑∆𝐸𝑘 > 0 

 

 

 

 

 

 Divergent phase space: ∆𝜑∆𝐸𝑘 < 0 

 

𝐴𝑓𝑡𝑒𝑟 30 𝑐𝑚
 

𝐴𝑓𝑡𝑒𝑟 30 𝑐𝑚
 

Late 

particles 

Early 

particles 



5. Velocity modulation bunching 
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Thin lens cavity and velocity modulation 

 Energy gain in short cavity 

∆𝐸𝑘 = 𝑞  𝑅𝑒 𝐸𝑧
𝑆𝑊

0, 𝑧, 𝑡 𝑑𝑧
𝐿/2

−𝐿/2
   

         = 𝑞  ℇ𝑧
𝑆𝑊

0, 𝑧 cos𝜔𝑡 𝑑𝑧
𝐿/2

−𝐿/2
  

         = 𝑞𝑉 cos𝜔𝑡  Definition of the  

cavity voltage 
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Velocity modulation bunching 
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Velocity modulation bunching 
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Velocity modulation bunching 
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Velocity modulation bunching 
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Velocity modulation bunching 
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Velocity modulation bunching 
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Velocity modulation bunching 
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Velocity modulation bunching 
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Velocity modulation bunching 
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Velocity modulation bunching 



6. Adiabatic phase damping 



       6. Adiabatic phase damping                                                                                              15 

Longitudinal Beam dynamics in a TW structure 

 Longitudinal electric field 

 𝐸𝑧 𝑟, 𝑧, 𝑡 = 𝐸0 𝐶𝑛𝐽0 𝐾𝑛𝑟 𝑒𝑖 𝜔𝑡−𝑘𝑛𝑧∞
𝑛=−∞   

1. In most of structures of interest 𝐶𝑛 ≪ 𝐶0   , 𝑛 ≠ 0. 

2. The structure is design so that 𝑣 = 𝑣𝑝ℎ,0, therefore the interaction of the 

particles with other space harmonics (𝑣 ≠ 𝑣𝑝ℎ,𝑛 , 𝑛 ≠ 0) can be neglected. 

⟹   𝑅𝑒 𝐸𝑧 0, 𝑧, 𝑡 = 𝐸0 cos 𝜃      ,      𝜃 = 𝜔𝑡 − 𝑘0𝑧 

 Longitudinal equation of motions 

 ∆𝐸𝑘 = −𝑒𝐸0 cos 𝜃 ∆𝑧 = 𝑚𝑐2∆𝛾   ⟹   
𝑑𝛾

𝑑𝑧
= −

𝑒

𝑚𝑐2
 𝐸0 cos 𝜃 

 𝜃 = 𝜔𝑡 − 𝑘0𝑧 = 𝜔 𝑡 −
1

𝑣𝑝ℎ
𝑧       ⟹    

𝑑𝜃

𝑑𝑧
= 𝜔

1

𝑣
−

1

𝑣𝑝ℎ
  

 Definition of synchronous particle 

 A theoretical particle whose velocity is kept (approximately) equal to 𝑣𝑝ℎ derfore 

𝑑𝜃𝑠/𝑑𝑧 ≈ 0. 
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Beam acceleration    
                         

     Damped oscillatory motion 

𝑑𝛾

𝑑𝑧
= −

𝑒

𝑚𝑐2
 𝐸0 cos 𝜃

𝑑𝜃

𝑑𝑧
= 𝜔

1

𝑣
−

1

𝑣𝑝ℎ
     

 

Motion of non-synchronous particle 

 
𝛾 = 𝛾𝑠 + Δ𝛾
𝜃 = 𝜃𝑠 + Δ𝜃

   
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑜𝑡𝑖𝑜𝑛

    

𝑑Δ𝛾

𝑑𝑧
=

𝑒𝐸0

𝑚𝑐2
sin 𝜃𝑠 Δ𝜃              

𝑑Δ𝜃

𝑑𝑧
= −

𝜔

𝑐
𝛾𝑠
2 − 1 −3/2Δ𝛾 

  

𝑑2

𝑑𝑧2
Δ𝜃 + 2𝛼

𝑑

𝑑𝑧
Δ𝜃 + Ω2Δ𝜃 = 0       with          

Ω2 =
𝜔

𝑐
𝛾𝑠
2 − 1 −3/2 𝑒

𝑚𝑐2
𝐸0sin 𝜃𝑠

𝛼 = −
3𝛾𝑠

2 𝛾𝑠
2−1

𝑒

𝑚𝑐2
𝐸0cos 𝜃𝑠            

 

The acceleration procedure 

 
 At the entrance of the structure: 

     𝑣𝑝ℎ = 𝑣𝑠 and cos 𝜃𝑠 = 0 or 𝜃𝑠 = 𝜋/2  

 

 Then 𝑣𝑝ℎ is slowly increased. 

     ⟹ 𝑣𝑝ℎ > 𝑣𝑠  ⟹ 
𝑑𝜃𝑠

𝑑𝑧
> 0 
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Beam acceleration    
                         

     Damped oscillatory motion 

𝑑𝛾

𝑑𝑧
= −

𝑒

𝑚𝑐2
 𝐸0 cos 𝜃

𝑑𝜃

𝑑𝑧
= 𝜔

1

𝑣
−

1

𝑣𝑝ℎ
     

 

Motion of non-synchronous particle 

 
𝛾 = 𝛾𝑠 + Δ𝛾
𝜃 = 𝜃𝑠 + Δ𝜃

   
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑜𝑡𝑖𝑜𝑛

    

𝑑Δ𝛾

𝑑𝑧
=

𝑒𝐸0

𝑚𝑐2
sin 𝜃𝑠 Δ𝜃              

𝑑Δ𝜃

𝑑𝑧
= −

𝜔

𝑐
𝛾𝑠
2 − 1 −3/2Δ𝛾 

  

𝑑2

𝑑𝑧2
Δ𝜃 + 2𝛼

𝑑

𝑑𝑧
Δ𝜃 + Ω2Δ𝜃 = 0       with          

Ω2 =
𝜔

𝑐
𝛾𝑠
2 − 1 −3/2 𝑒𝐸0

𝑚𝑐2
sin 𝜃𝑠

𝛼 = −
3𝛾𝑠

2 𝛾𝑠
2−1

𝑒𝐸0

𝑚𝑐2
cos 𝜃𝑠            

 

The acceleration procedure 

 
 At the entrance of the structure: 

     𝑣𝑝ℎ = 𝑣𝑠 and cos 𝜃𝑠 = 0 or 𝜃𝑠 = 𝜋/2  

 

 Then 𝑣𝑝ℎ is slowly increased. 

     ⟹ 𝑣𝑝ℎ > 𝑣𝑠  ⟹ 
𝑑𝜃𝑠

𝑑𝑧
> 0 

With a Hamiltonian dynamics approach one finds [3]:            

 

  

Δ𝜃𝑚𝑎𝑥 = 𝐶
𝑒𝑚𝑐3

𝜔
sin 𝜃𝑠 𝐸0 𝛾𝑠

2 − 1 3/2
−1/4

 

Δ𝛾𝑚𝑎𝑥 = 𝐶
𝑒𝑚𝑐3

𝜔
sin 𝜃𝑠 𝐸0 𝛾𝑠

2 − 1 3/2
1/4

    

   

 
[3] J. Le Duff, Dynamics and Acceleration in Linear Structures, CERN Accelerator School (CAS), CERN-2005-004. 
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Motion of non-synchronous particle 

 Example:  

      particle trajectories in three sample TW structure  

𝑑𝛾

𝑑𝑧
= −

𝑒

𝑚𝑐2
 𝐸0 cos 𝜃

𝑑𝜃

𝑑𝑧
= 𝜔

1

𝑣
−

1

𝑣𝑝ℎ
     

 

𝑣𝑝ℎ → constant                        𝑣𝑝ℎ → linearly increased                 𝑣𝑝ℎ → linearly increased 
𝐸0   → constant                                          𝐸0   → constant                         𝐸0   → linearly increased 



7. Longitudinal dynamics of the IPM linac  
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Thanks for your attention! 


