

Longitudinal Beam Dynamics

Shahin Sanaye Hajari

School of Particles and Accelerators, Institute For Research in Fundamental Science (IPM), Tehran, Iran

IPM Linac workshop, Bahman 28-30, 1396

Contents

- **1. Introduction**
- 2. Electrostatic vs RF acceleration
- 3. RF cavities
- 4. Longitudinal beam parameters
- 5. Velocity modulation bunching
- 6. Adiabatic phase damping
- 7. Longitudinal dynamics of the IPM linac

1. Introduction

1. Introduction

Charged particle beams

> Particles traveling in nearly the same direction with nearly the same energy.

Longitudinal direction & Transverse Plane

- ▶ Independent motion. \Rightarrow 3D \rightarrow 2D+1D
- Acceleration vs Beam Control.

The goal of a Beam Dynamics study

➢ To study the beam behavior under the influence of electromagnetic fields of accelerator components (magnets and cavities and ...) and the beam itself.

$$\checkmark \text{ Maxwell's equations:} \begin{cases} \nabla \cdot E = \rho/\varepsilon_0 \\ \nabla \cdot B = 0 \\ \nabla \times E = -\partial B/\partial t \\ \nabla \times B = \mu_0 (J + \partial E/\partial t) \end{cases}$$

$$\checkmark \text{ Lorentz force: } d\mathbf{P}/dt = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

Determination of the required array of the electromagnetic fields (specification of the accelerator components).

 \implies Beam Dynamics Design

Perquisites

- ✓ Classical mechanics (including Hamiltonian dynamics)
- ✓ Electromagnetic theory.
- ✓ Special relativity.
- ✓ Statistical mechanics (only for Space charge dynamics)

2. Electrostatic vs RF acceleration

Electrostatic acceleration limitations

Breakdown effect

- ✓ Highest voltage ever: ~12 MV
- \checkmark Large and expensive machines.

Holifield Heavy Ion Accelerator, ORNL

Electrostatic acceleration limitations

- ➢ Non-repeatable
 - ✓ Electrostatic forces are conservative! Work done by a conservative force on a particle in a closed loop is zero!

- > Solution: Electromagnetic waves confined in cavities.
- > The frequency range determines the cavity dimension.

 \implies Radio Frequency (RF) acceleration

RF acceleration and the concept of bunching

Sinusoidal field: Alternative acceleration and deceleration depending on the arrival time.

3. RF cavities

RF cavities

- An RF cavity is simply an empty space surrounded by metallic walls in which the electromagnetic waves *resonate*.
- In accelerators, one usually uses cavities with axisymmetric geometries.

Cavity modes

- ✓ Different solutions to Maxwell's equations for any specific boundary condition.
- \checkmark The excited mode depends on the cavity geometry and the frequency.
- ✓ Transverse electric (TE), transverse magnetic (TM), transverse electric and magnetic (TEM) modes.
- ✓ transverse magnetic (TM) or E mode is characterized by a longitudinal electric field (E_z) .

RF cavities

> Example:

 TM_{01} mode in a cylindrical waveguide [1] (the lowest frequency mode).

$$E_{z} = E_{0}J_{0}(k_{c}r)e^{-ik_{z}z}e^{i\omega t}$$

$$\begin{cases}k = \omega_{c}/c \\k_{c} = \omega_{c}/c = p_{01}/b \\k_{z}^{2} = k^{2} - k_{c}^{2} \\\downarrow \\first root of J_{0}(x) \end{cases}$$

$$E_{z} = E_{0}\cos\theta \rightarrow \text{Longitudinal field on axis}$$

$$\theta = k_{z}z - \omega t \rightarrow \text{RF phase seen by the particle}$$
Synchronization condition: $\frac{d\theta}{dt} = 0 \implies v = \omega_{k_{z}}$
definition of phase velocity, v_{ph}

$$v_{ph} = c \frac{\omega}{\sqrt{\omega^{2} - \omega_{c}^{2}}} > c$$

^[1] D.M. Pozar, "Microwave Engineering", third edition, John Wiley & Sons, 2005 (chapter 3).

3. **RF cavities**

Disc loaded structure; Slowing down the waves!

- > Introducing some obstacles, e.g. irises and providing a periodic structure.
- > A perturbed version of the cylindrical waveguide

Fourier expansion of $E_d(r, z)$ and applying Maxwell's equations

$$\implies E_z(r, z, t) = E_0 \sum_{n=-\infty}^{\infty} C_n J_0(K_n r) e^{i(\omega t - k_n z)}$$

$$\begin{cases} k_n = k_0 + 2\pi n/d \\ K_n^2 = (\omega/c)^2 - k_n^2 \end{cases}$$

 $v_{ph,n} = \frac{\omega}{k_n} = \frac{\omega}{k_0 + 2\pi n/d} \Rightarrow$

Infinite number of waves with different phase velocities (called Space Harmonics).

3. RF cavities

Structure modes

> Slater theorem

^[2] T.P. Wangler et al., "RF Linear Accelerator", 2nd edition, John Wile & Sons, 2008 (chapter 3).

Traveling wave (TW) vs Standing wave (SW) cavities

> TW structure

$$\checkmark \quad E_z^{(TW)}(r,z,t) = \mathcal{E}_z^{(TW)}(r,z) e^{i(kz-\omega t)}$$

✓ Short filling time (< $1\mu s$).

SW structure

$$\checkmark \quad E_z^{(SW)}(r,z,t) = \mathcal{E}_z^{(SW)}(r,z) e^{i\omega t}$$

(Fixed nodes)

✓ Longer filling time (~ $10s \mu s$).

4. Longitudinal beam parameters

4. Longitudinal Beam parameters

Longitudinal phase space

- \succ Kinetic energy vs phase(ωt)
 - $\checkmark At a longitudinal position (z)$
 - \checkmark z vs t
- Beam parameters:
 - \checkmark rms bunch length:

$$\sigma_{\varphi} = \sqrt{\langle (\varphi - \langle \varphi \rangle)^2 \rangle}$$

✓ rms energy spread:

$$\sigma_{E_k} = \sqrt{\langle (E - \langle E \rangle)^2 \rangle}$$

 \checkmark rms longitudinal emittance: \rightarrow a measure of the area of phase space ellipse.

$$\sigma_{E_k} = \sqrt{\langle (E - \langle E \rangle)^2 \rangle \langle (\varphi - \langle \varphi \rangle)^2 \rangle - \langle (E - \langle E \rangle)(\varphi - \langle \varphi \rangle) \rangle}$$

Longitudinal phase space

> Convergent phase space: $\langle \Delta \varphi \Delta E_k \rangle > 0$

After 30 cm

After 30 cm

→ Divergent phase space: $\langle \Delta \varphi \Delta E_k \rangle < 0$

5. Velocity modulation bunching

Thin lens cavity and velocity modulation

14

6. Adiabatic phase damping

Longitudinal Beam dynamics in a TW structure

Longitudinal electric field

 $\checkmark E_z(r, z, t) = E_0 \sum_{n=-\infty}^{\infty} C_n J_0(K_n r) e^{i(\omega t - k_n z)}$

- 1. In most of structures of interest $C_n \ll C_0$, $n \neq 0$.
- 2. The structure is design so that $v = v_{ph,0}$, therefore the interaction of the particles with other space harmonics ($v \neq v_{ph,n}$, $n \neq 0$) can be neglected.

$$\implies Re[E_z(0, z, t)] = E_0 \cos \theta \quad , \quad \theta = \omega t - k_0 z$$

Longitudinal equation of motions

$$\checkmark \Delta E_k = -eE_0 \cos\theta \,\Delta z = mc^2 \Delta \gamma \implies \frac{d\gamma}{dz} = -\frac{e}{mc^2} E_0 \cos\theta$$
$$\checkmark \theta = \omega t - k_0 z = \omega \left(t - \frac{1}{v_{ph}} z \right) \implies \frac{d\theta}{dz} = \omega \left(\frac{1}{v} - \frac{1}{v_{ph}} \right)$$

- Definition of synchronous particle
 - A theoretical particle whose velocity is kept (approximately) equal to v_{ph} derfore $d\theta_s/dz \approx 0$.

$\frac{d\gamma}{dz} = -\frac{e}{mc^2} E_0 \cos\theta$ Motion of non-synchronous particle $\frac{d\theta}{dz} = \omega \left(\frac{1}{v} - \frac{1}{v_{ph}} \right)$ $\begin{cases} \gamma = \gamma_s + \Delta \gamma & \xrightarrow{Equation of motion} \\ \theta = \theta_s + \Delta \theta & \xrightarrow{Equation of motion} \end{cases} \begin{cases} \frac{d\Delta \gamma}{dz} = \frac{eE_0}{mc^2} \sin \theta_s \,\Delta \theta \\ \frac{d\Delta \theta}{dz} = -\frac{\omega}{c} (\gamma_s^2 - 1)^{-3/2} \Delta \gamma \end{cases}$ $\begin{cases} \Omega^2 = \frac{\omega}{c} (\gamma_s^2 - 1)^{-3/2} \frac{e}{mc^2} E_0 \sin \theta_s \\ \alpha = -\frac{3\gamma_s}{2(\gamma_s^2 - 1)} \frac{e}{mc^2} E_0 \cos \theta_s \end{cases}$ $\frac{d^2}{dz^2}\Delta\theta + 2\alpha \frac{d}{dz}\Delta\theta + \Omega^2\Delta\theta = 0 \quad \text{with}$ **Beam acceleration Damped oscillatory motion** The acceleration procedure 1.0

At the entrance of the structure: $v_{ph} = v_s$ and $\cos \theta_s = 0$ or $\theta_s = \pi/2$

> Then v_{ph} is slowly increased. $\Rightarrow v_{ph} > v_s \Rightarrow \frac{d\theta_s}{dz} > 0$

Motion of non-synchronous particle

$$= \gamma_{s} + \Delta \gamma \qquad \xrightarrow{Equation of motion} \qquad \begin{cases} \frac{d\Delta \gamma}{dz} = \frac{eE_{0}}{mc^{2}} \sin \theta_{s} \,\Delta \theta \\ \frac{d\Delta \theta}{dz} = -\frac{\omega}{c} (\gamma_{s}^{2} - 1)^{-3/2} \Delta \gamma \end{cases}$$

$$\frac{d\gamma}{dz} = -\frac{e}{mc^2} E_0 \cos \theta$$
$$\frac{d\theta}{dz} = \omega \left(\frac{1}{v} - \frac{1}{v_{ph}}\right)$$

With a Hamiltonian dynamics approach one finds [3]:

$$\Delta \theta_{max} = C \left[\frac{emc^3}{\omega} \sin \theta_s E_0 (\gamma_s^2 - 1)^{3/2} \right]^{-1/4}$$
$$\Delta \gamma_{max} = C \left[\frac{emc^3}{\omega} \sin \theta_s E_0 (\gamma_s^2 - 1)^{3/2} \right]^{1/4}$$

[3] J. Le Duff, Dynamics and Acceleration in Linear Structures, CERN Accelerator School (CAS), CERN-2005-004.

At the entrance of the structure: $v_{ph} = v_s \text{ and } \cos \theta_s = 0 \text{ or } \theta_s = \pi/2$ $\overset{0.5}{\underset{\square}{\square}} 0.0$ $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$ $\overset{0.5}{\underset{\square}{\square}} 0.0$ $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$ θ $\xrightarrow{v_{ph}} v_{ph} > v_s \Rightarrow \frac{d\theta_s}{dz} > 0$ -1.0

Motion of non-synchronous particle

➢ Example:

particle trajectories in three sample TW structure

 $v_{ph} \rightarrow$ linearly increased $E_0 \rightarrow$ linearly increased

7. Longitudinal dynamics of the IPM linac

Thanks for your attention!