

Transverse Beam Dynamics

Shahin Sanaye Hajari

School of Particles and Accelerators, Institute For Research in Fundamental Science (IPM), Tehran, Iran

IPM Linac workshop, Bahman 28-30, 1396

Contents

1. Introduction

2. Transverse Beam parameters

3. Focusing

- 4. Emittance growth
- **5. Optical functions**
- 6. Alignment

1. Introduction

1. Introduction

The need for focusing

- Space charge repulsive forces.
- Transverse momentum components (the concept of emittance) results in Beam divergence.

- Acceleration vs Beam control
 - ✓ Beam loss
 - ✓ Beam quality

2. Transverse Beam parameters

2. Transverse Beam parameters

Transverse phase space

- momentum vs position
- Liouville's theorem
 - ✓ Under conservative forces the area of the phase space remains constant.

Trace space

Angle vs position

$$p_x = \gamma m \frac{dx}{dt} = \gamma m \frac{dx}{dz} \beta c = m c \gamma \beta x$$

- Best describes the trajectory of the beam particles.
- Adiabatic damping:
 - ✓ x' ∠ as a result of acceleration
- Measurable quantity

Trace space

> Convergent beam: $\langle xx' \rangle < 0$

After 30 cm

 $\blacktriangleright \text{ Divergent beam: } \langle xx' \rangle < 0$

2. Transverse Beam parameters

Transverse beam parameters

- $\textbf{Beam position:} \\ \langle x \rangle$
- ➢ rms Beam size:
 - $a=\sqrt{\langle x^2\rangle}$
- Derivative of the rms Beam size: $a' = \langle xx' \rangle / a$
- ➢ Geometric emittance: → $\varepsilon_g = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle \langle xx' \rangle^2}$
- $\succ \text{ Normalized emittance: } \\ \varepsilon_n = \gamma \beta \varepsilon_g$

a measure of the trace space area.

3. Focusing

Space charge force

- > The force seen by each particle from the charge distribution of the beam.
- Electric field:
 - ✓ Gauss's law: $E_{sr}(r) = \frac{q}{\epsilon_0 r} \int_0^r n(r') r' dr'$
- > Magnetic field:
 - ✓ Ampere's law: $B_{s\theta}(r) = \frac{q\mu_0\beta c}{r} \int_0^r n(r')r'dr'$
- Lorentz force

✓ $F_{sr}(r) = \frac{q^2}{\epsilon_0 r} (1 - \beta^2) \int_0^r n(r') r' dr' \rightarrow \text{non-relativistic phenomenon}$

- 1 MeV electron beam: $\beta = 0.941$
- 1MeV proton beam: $\beta = 0.046$
- ✓ For a uniform distribution: $F_{sr}(r) \propto r$
- $\checkmark \quad E_{sr} , B_{s\theta}(r) \propto I$

External fields

- Electrostatic or magnetostatic lens?
 - $\checkmark \quad \boldsymbol{F} = q(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})$
 - $\checkmark cB = 3 \times 10^8 m/s \times 1T = 300 \, MV/m!$

 \Rightarrow For relativistic beams the magnetic field is more efficient for focusing.

 \succ Longitudinal magnetic field (Solenoids) \rightarrow later!

Transverse magnetic field multipole expansion:

Quadrupole focusing

Equation of motion

$$\checkmark \quad F_{x} = \frac{dp_{x}}{dt} = \gamma m \ddot{x} = ev_{z}B_{y} \qquad \begin{cases} \dot{x} = \frac{dx}{dz}\frac{dz}{dt} \cong x'\beta c\\ \ddot{x} \cong x''(\beta c)^{2} \end{cases}$$

 $\begin{cases} x'' - kx = 0 \\ y'' + kx = 0 \end{cases} \qquad k = \frac{eg}{\gamma m\beta c} \longrightarrow \text{quadrupole strength}$

\Rightarrow oscillatory motion around the **orbit**

$$\begin{cases} x = x_0 \cosh \sqrt{kz} + x'_0 \frac{1}{\sqrt{k}} \sinh \sqrt{kz} \\ x' = x_0 \sqrt{k} \sinh \sqrt{kz} + x'_0 \cosh \sqrt{kz} \end{cases} \qquad k > 0 \quad \to \quad \text{defocusing} \\ \begin{cases} x = x_0 + x'_0 z \\ x' = x'_0 \end{cases} \qquad k = 0 \quad \to \quad \text{drift} \\ \begin{cases} x = x_0 \cos \sqrt{-kz} + x'_0 \frac{1}{\sqrt{-k}} \sin \sqrt{-kz} \\ x' = -x_0 \sqrt{-k} \sin \sqrt{kz} + x'_0 \cos \sqrt{-kz} \end{cases} \qquad k < 0 \quad \to \quad \text{focusing} \end{cases}$$

Transfer matrix

Definition

 $\begin{bmatrix} x \\ x' \end{bmatrix} = M \begin{bmatrix} x_0 \\ x'_0 \end{bmatrix}$

Focusing quadrupole (k < 0):

$$M = \begin{bmatrix} \cos\sqrt{-k}l & \frac{1}{\sqrt{-k}}\sin\sqrt{-k}l \\ -\sqrt{-k}\sin\sqrt{-k}l & \cos\sqrt{-k}l \end{bmatrix}$$

> Drift space
$$(k = 0)$$
:
 $M = \begin{bmatrix} 1 & l \\ 0 & 1 \end{bmatrix}$

> Focusing quadrupole (k > 0):

$$M = \begin{bmatrix} \cosh\sqrt{k}l & \frac{1}{\sqrt{k}}\sinh\sqrt{k}l \\ \sqrt{k}\sinh\sqrt{k}l & \cosh\sqrt{k}l \end{bmatrix}$$

3. Focusing

Transfer matrix

✓ Focusing

✓ Defocusing

 $M = \begin{bmatrix} 1 & 0\\ 1/f & 1 \end{bmatrix}$

Multielement transfer line \geq $M = M_{D1} M_{Q1} M_{D2} M_{Q2} M_{D3} M_{Q3} M_{D4}$

9

Ζ

 D_4

D2

Solenoid focusing

- Focusing scheme:
 - 1. v_z interacts with B_r at the entrance of the solenoid producing a v_{φ} .

-2

- 2. The resulting v_{φ} interacts with B_z producing F_r .
- > Particle trajectories $\begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$

Solenoid focusing

Larmor frequency and Larmor frame [1]

$$\checkmark \omega_L = \frac{qB}{2\gamma m}$$

 \checkmark A frame rotating with Larmor frequency.

Figure Equation of motion in Larmor frame. $\begin{cases} x_L'' + k_0^2(z)x_L = 0 \\ y_L'' + k_0^2(z)y_L = 0 \end{cases}, \quad k_0(z) = \frac{q_B(z)}{2\gamma m\beta c} \implies \text{focusing in both direction} \end{cases}$

^[1] M. Reiser, "Theory and Design of Charge Particle Beams", 2nd edition, Wiley-VCH, 2008.(chapter 3).

RF defocusing in a TW structure

Field expansions

$$\begin{cases} E_{z}(r, z, t) = E_{0}^{TW} \sum_{n=-\infty}^{\infty} C_{n}^{(TW)} J_{0}(K_{n}r) e^{i(\omega t - k_{n}z)} \\ E_{r}(r, z, t) = i E_{0}^{TW} \sum_{n=-\infty}^{\infty} C_{n}^{(TW)} \frac{k_{n}}{K_{n}} J_{1}(K_{n}r) e^{i(\omega t - k_{n}z)} \\ B_{\varphi}(r, z, t) = i E_{0}^{TW} \sum_{n=-\infty}^{\infty} C_{n}^{(TW)} \frac{k}{K_{n}c} J_{1}(K_{n}r) e^{i(\omega t - k_{n}z)} \end{cases}$$

Principle wave dominated structure \succ

$$F_r = -e(E_r - \beta c B_\theta) = e \frac{\omega}{\beta_w c} (1 - \beta \beta_w) \frac{J_1(K_0 r)}{K_0} E_0 \sin \theta \quad , \quad K_0 = \frac{i\omega}{c\beta_{ph}\gamma_{ph}}$$
Paraxial approximation $(K_0 r \ll 1 \Longrightarrow J_1(K_0 r) \cong \frac{K_0 r}{c})$

Paraxial approximation $(K_0 r \ll 1 \Longrightarrow J_1(K_0 r) \cong \frac{1-6r}{2})$

$$\implies F_r = \frac{e\omega E_0}{2c} \frac{(1-\beta\beta_{ph})}{\beta_{ph}} \sin\theta r$$

 \rightarrow Linrear

- \rightarrow Phase dependent focusing
- \rightarrow Zero for on crest acceleration
- \rightarrow Zero for relativistic beams

Envelope equation

From particle trajectory to beam envelope x'' + kx = 0 $a^{2} = \langle x^{2} \rangle \rightarrow aa' = \langle xx' \rangle \rightarrow a'^{2} + aa'' = \langle x'^{2} \rangle + \langle xx'' \rangle$ $a^{2} = \langle x^{2} \rangle \rightarrow aa' = \langle xx' \rangle \rightarrow a'^{2} + aa'' = \langle x'^{2} \rangle + \langle xx'' \rangle$

Including the space charge [2] (valid for beams of elliptical symmetry)

$$a'' + ka - \frac{\varepsilon_g^2}{a^3} - \frac{K}{4a} = 0$$
, $K = \frac{qI}{4\pi\epsilon_0 mc^3} \frac{2}{\beta^3 \gamma^3}$

✓ Emittance dominated beam:
$$\frac{\varepsilon_g^2}{a^3} \gg \frac{K}{4a}$$
 ✓ Space charge dominated beam: $\frac{\varepsilon_g^2}{a^3} \ll \frac{K}{4a}$

^[1] Sacherer, F. J., "RMS Envelope Equations with Space Charge", IEEE Transactions on Nuclear Science, Volume 18 Issue 3, 1971.

Emittance and the concept of beam quality

> A quantitative measure of the beam quality

$$a'' + ka - \frac{\varepsilon_g^2}{a^3} - \frac{K}{4a} = 0$$

 \checkmark A beam of larger emittance has a larger size at waist.

Focusing strength:

 \checkmark The focusing strength is approximately proportional to the beam emittance.

Emittance growth sources

Transverse RF forces

- ✓ Time dependent forces violating Liouville's theorem allow for the emittance growth.
- \checkmark Focusing in a magnetostatic lens.
 - Particles at the same position receive the same focusing impulse resulting in a conserved phase space area.

Emittance growth sources

- Transverse RF forces
 - ✓ RF defocusing

•
$$F_r = \frac{e\omega E_0}{2c} \frac{(1-\beta\beta_{ph})}{\beta_{ph}} \sin\theta r \rightarrow \text{a phase dependent focusing.}$$

Emittance growth sources

Nonlinear forces

 \checkmark Filamentation: the area of the phase space is conserved but the shape is not

 \checkmark The phase space area is not the best quantity describing the beam quality.

 \Rightarrow rms emittance

Emittance growth sources

 \succ linear forces

$$\begin{aligned} \varepsilon_g^2 &= \langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2 \\ \frac{d\varepsilon_g^2}{dz} &= 2 \langle xx' \rangle \langle x'^2 \rangle + 2 \langle x^2 \rangle \langle x'x'' \rangle - 2 \langle xx' \rangle (\langle x'^2 \rangle + \langle xx'' \rangle) \\ &= 2 \langle x^2 \rangle \langle x'x'' \rangle - 2 \langle xx' \rangle \langle xx'' \rangle \end{aligned}$$

$$x'' + kx = 0 \implies \begin{cases} \langle x'x'' \rangle = -k \langle xx' \rangle \\ \langle xx'' \rangle = -k \langle x^2 \rangle \end{cases}$$

$$\implies \frac{d\varepsilon_g^2}{dz} = 0$$

5. Optical functions

Optical functions

An equivalent approach to the envelope equation describing the envelope evolution when the emittance is conserved. A matrix method instant of solving a nonlinear deferential equation.

Definitions

$$\beta = \frac{\langle x^2 \rangle}{\varepsilon_g} \quad \text{or} \quad a = \sqrt{\beta \varepsilon_g}$$
$$\alpha = -\frac{1}{2}\beta' = -\frac{\langle xx' \rangle}{\varepsilon_g}$$
$$\gamma = \frac{1-\alpha^2}{\beta} = \langle x'^2 \rangle$$

➤ Transfer matrix

 $\begin{bmatrix} x \\ x' \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \begin{bmatrix} x_0 \\ x'_0 \end{bmatrix}$ $X = MX_0$

Optical functions

> The evolution of the optical functions

$$X = MX_{0} \rightarrow X^{T} = X_{0}^{T}M^{T}$$

$$XX^{T} = MX_{0}X_{0}^{T}M^{T} \xrightarrow{averaging} \langle XX^{T} \rangle = M\langle X_{0}X_{0}^{T} \rangle M^{T}$$

$$B = \langle XX^{T} \rangle \rightarrow \text{ definition of beta matrix}$$

$$B = \langle \begin{bmatrix} x \\ x' \end{bmatrix} \begin{bmatrix} x & x' \end{bmatrix} \rangle = \begin{bmatrix} \langle x^{2} \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^{2} \rangle \end{bmatrix}$$

$$= \begin{bmatrix} \beta \varepsilon_{g} & -\alpha \varepsilon_{g} \\ -\alpha \varepsilon_{g} & \gamma \varepsilon_{g} \end{bmatrix}$$

If
$$\varepsilon_g = \varepsilon_{0g} \rightarrow \begin{bmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{bmatrix} = M \begin{bmatrix} \beta_0 & -\alpha_0 \\ -\alpha_0 & \gamma_0 \end{bmatrix} M^T$$

6. Alignment

Alignment

Misalignment of a focusing element produce a kick. The beam is drawn an average toward the axis.

Stanford Linear Collider (3.2 km length Linac) was claimed to be the world's most straight object.

Misalignment

- The kick results in beam loss
 - ✓ In our linac: $\Delta x = 2m \tan 1^\circ \cong 3.5 \ cm!$
- ➢ In a RF cavity
 - ✓ With a beam off-set particles travel on a further distance with respect to the cavity axis (on average) experiencing a larger RF defocusing and hence a larger emittance growth.

Thanks for your attention!