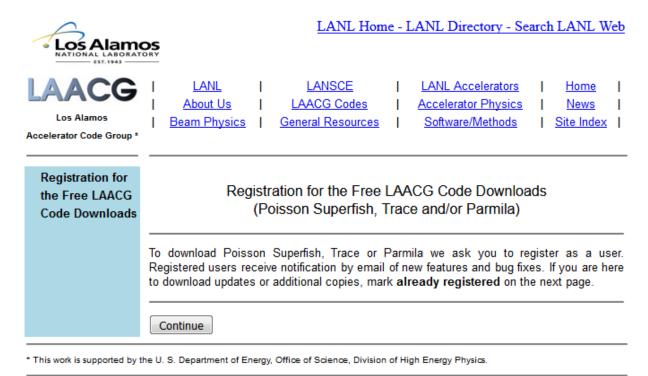


The introduction to learning Poisson/Superfish & Astra codes

Sara Zarei
Winter 96

Electromagnetic field simulation code

- ▶ POISSON/SUPERFISH
- ▷ MAGIC
- ▷ MAFIA
- COMSOL
- \triangleright CST
- > HFSS
- ▶ FEMLAB, ect.


Beam Dynamic code

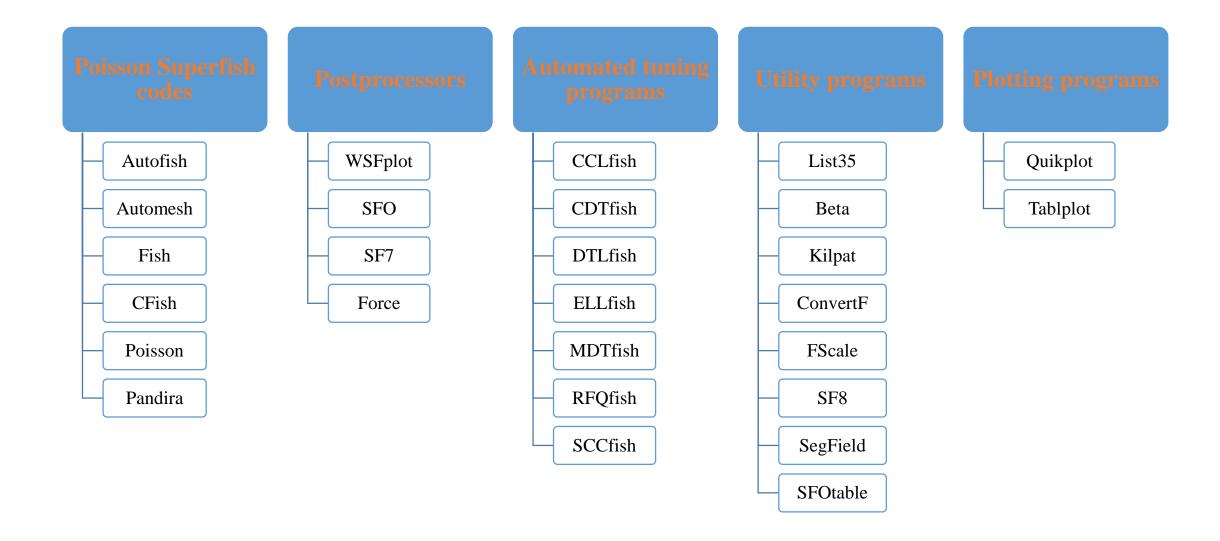
- ▷ ASTRA
- ▶ PARMILA
- ▶ PARMELA
- ▶ TRACK
- **⊳** MAGIC
- ▷ COMSOL
- \triangleright CST, ect.

Poisson Superfish

Introduction I

- a collection of programs for calculating static magnetic and electric fields and radio-frequency electromagnetic fields in either 2-D Cartesian coordinates or axially symmetric cylindrical coordinates.
- ▶ Getting Started with Poisson Superfish: The best way to learn about Poisson Superfish is to run the sample problems described in the documentation.

Los Alamos National Laboratory Operated by the <u>University of California</u> for the <u>National Nuclear Security Administration</u> of the US <u>Department of Energy</u>.


Copyright © 2003 UC | Disclaimer/Privacy

Contacts

Last modified: Mon 27 Oct 2014 4:41 PM, FLK

		This file, containing the table of contents and suggestions for viewing and printing.
		General information about the software installation, features in the codes, references, history, SF.INI configuration, and technical support.
		Brief descriptions of all the input and output files used in the Poisson Superfish codes.
		 Information about the main programs Autofish, Automesh, Fish, CFish, Poisson, and Pandira.
	Codes description	 Information about the postprocessor programs WSFplot, SFO, SF7, and Force.
	description	The automated tuning programs CCLfish, CDTfish, DTLfish, MDTfish, ELLfish, and RFQfish.
		General purpose plotting programs Quikplot and Tablplot, and utility programs Beta, Kilpat, List35, ConvertF, SF8, FScale, SegField, and SFOtable.
		Discussion of rf-field example files for Fish, CFish, and Autofish contained in the Examples\RadioFrequency subdirectories.
	Example	Discussion of the static-field example files for Poisson and Pandira contained in the Examples\Magnetostatic and Examples\Electrostatic subdirectories.
		Discussion of the tuning-program example files contained in the Examples\CavityTuning subdirectories.
		Theory of electrostatics and magnetostatics from John Warren's treatment in the 1987 Reference Manual
		Properties of static magnetic and electric fields from John Warren's treatment in the 1987 Reference Manual
	Theory	Boundary conditions and symmetries from John Warren's treatment in the 1987 Reference Manual
		Numerical methods in Poisson and Pandira from John Warren's treatment in the 1987 Reference Manual
		RF cavity theory from John Warren's treatment in the 1987 Reference Manual

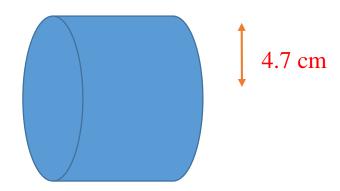
Summary of the Poisson Superfish codes

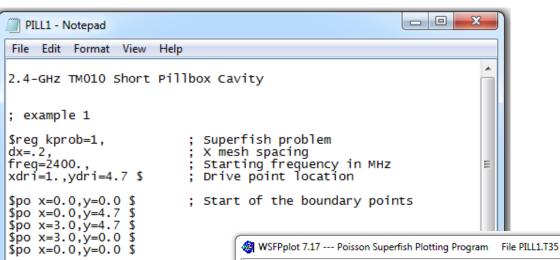
Input File

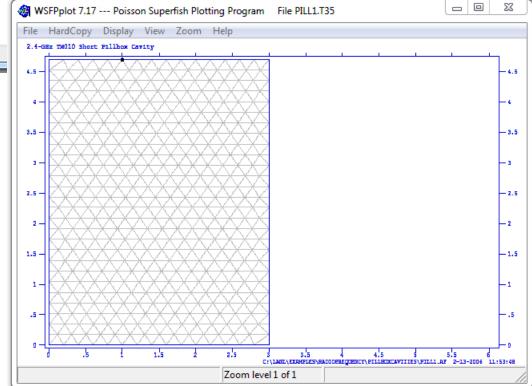
- ▶ Problem descriptions of up to ten 80-character title lines are supported in all the codes.
- ▶ has extension: AF, AM
- b contains: REG, PO, and MT namelist variables that define the problem parameters and the geometry.
- ⊳ can use either a dollar sign (\$) or an ampersand (&) as the namelist delimiter.
- ▶ Comments can appear on any line in the input file after a semicolon (;) or exclamation mark (!).
- Variable KPROB must appear in the first REG namelist.

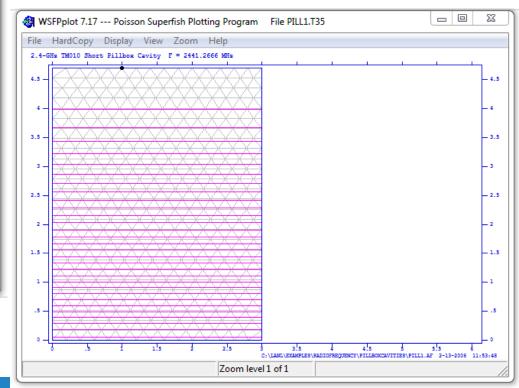
Variable	Superfish	Poisson
NBSUP	1	0
NBSLO	0	1
NBSRT	1	0
NBSLF	1	0

Field	Dirichlet	Neumann
Magnetic	parallel to boundary.	perpendicular to boundary.
Electric	perpendicular to boundary.	parallel to boundary.


0 indicates a Dirichlet boundary and 1 indicates a Neumann boundary


Poisson Superfish Example 1 A Pillbox cavity


For the accelerating mode (TM_{010}), the resonant wavelength is:


$$\lambda = \frac{\pi D}{x_1}$$
$$x_1 = 2.40483$$

 x_1 - first root of the zero-th order Bessel function $J_0(x)$


```
All calculated values below refer to the mesh geometry only.
Field normalization (NORM = 0):
                                    EZERO =
                                                 1.00000 MV/m
Frequency
                                              2441.26656 MHz
Particle rest mass energy
                                              938.272029 MeV
Beta = 0.4885913
                                                 137.096 MeV
                           Kinetic energy =
Normalization factor for E0 = 1.000 MV/m =
                                                5165.416
Transit-time factor
                                               0.0001896
                                          = 2.45655E-04 Joules
Stored energy
Using standárd room-temperature copper.
                                                12.89047 milliohm
Surface resistance
Normal-conductor resistivity
                                                 1.72410 microOhm-cm
Operating temperature
                                                 20.0000 C
Power dissipation
                                                107.3166 W
                         Shunt impedance =
                                                 279.547 MOhm/m
        35111.9
       452.608 Ohm
Rs*Q =
                                    Z*T*T =
                                                   0.000 Mohm/m
r/Q =
          0.000 Ohm Wake loss parameter =
                                                 0.00000 V/pC
Average magnetic field on the outer wall =
                                                 1371.08 A/m, 1.21161 W/cm^2
Maximum H (at Z,R = 0.8,4.7)
                                                 1370.97 A/m, 1.21143 W/cm^2
Maximum E (at Z,R = 0.4,4.7)
                                              4.3707E-04 MV/m, 1.02619E-05 Kilp.
Ratio of peak fields Bmax/Emax
                                               3941.7412 mT/(MV/m)
Peak-to-average ratio Emax/E0
                                                  0.0004
wall segments:
                                                                          dF/dZ
                                                                                     dF/dR
Seament Zend
                     Rend
                                     Emax
                                                Power
                                                            P/A
         (cm)
                      (cm)
                                    (MV/m)
                                                (W)
                                                           (W/cm^2)
                                                                         (MHZ/mm)
                                                                                    (MHZ/mm)
        0.0000
                     4.7000
```

1

107.3

107.3

1.211

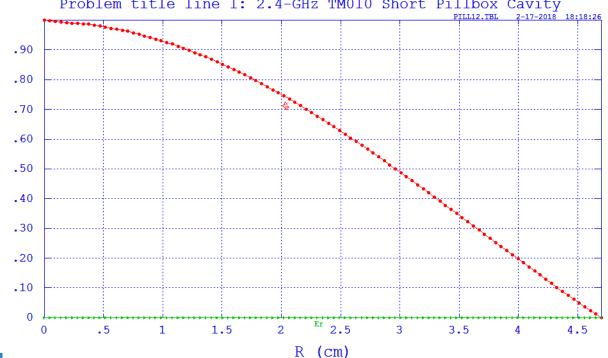
0.000

-52.00

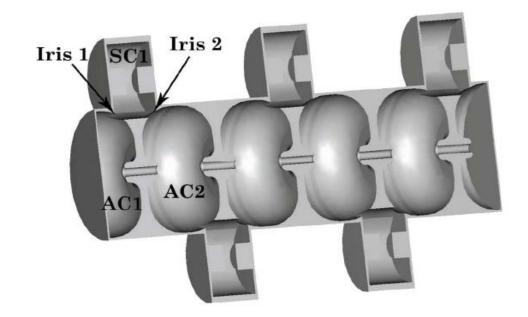
4.3707E-04

Total

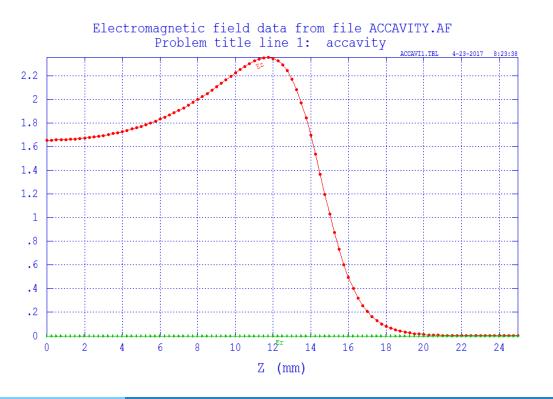
3.0000

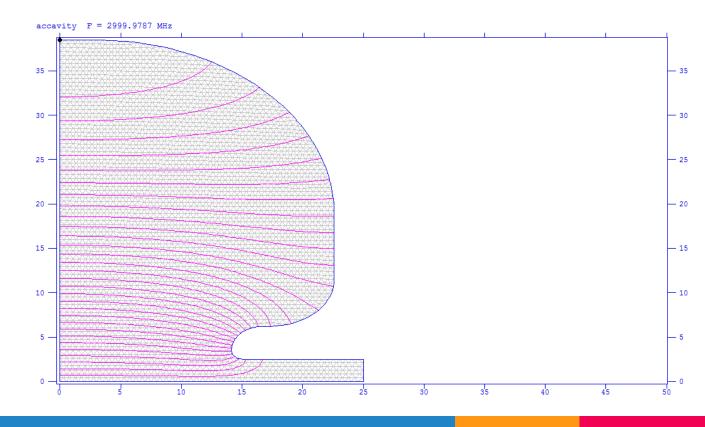

4.7000

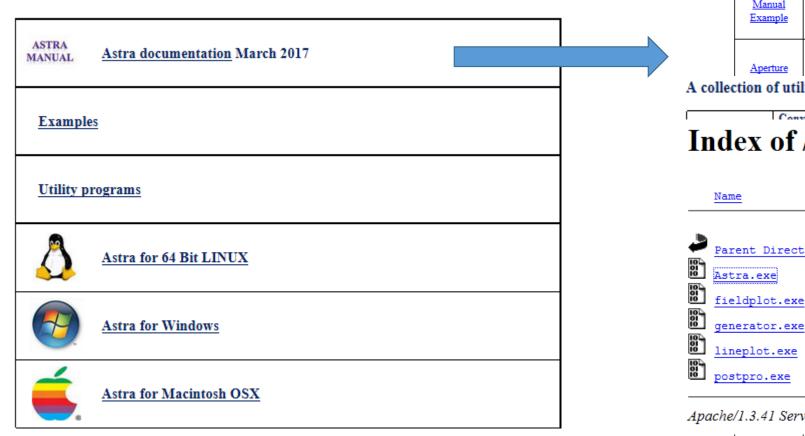
SFC


SF 7

Electromagnetic field data from file PILL1.AF Problem title line 1: 2.4-GHz TM010 Short Pillbox Cavity




Poisson Superfish Example 2 Accelerating Cavity


```
accavity
$reg freq=2998.5,KPROB=1,kmethod=1,norm=1,icylin=1,CONV=.1,rmass=-1,
xdri=0.000000,ydri=38.460000,dx=.1,NBSUP=1 ,NBSRT=1,NBSLO=0,NBSLF=1,beta=1,TEMPC=20$
$po,x=0.0000,y=0.0000$
$po,x=0.0000,y=38.4600$
$po,x=3.0000,y=38.4600$
$po,nt=2,x0=3.0000,y0=18.8600,x=19.6000,y=0.0000$
$po,x=22.6000,y=11.5000$
$po,nt=2,r=5.3000,x0=17.3000,y0=11.5000,theta=-90.0000$
$po,x=16.8000,y=6.2000$
$po,nt=2,r=2.7000,x0=16.8000,y0=3.5000,theta=180.0000$
$po,nt=2,x0=15.1000,y0=3.5000,x=0.0000,y=-1.0000$
$po,x=25.0000,y=2.5000$$po,x=25.0000,y=0.0000$
$po,x=0.0000,y=0.0000$
```


Astra A Space Charge Tracking Algorithm

The ASTRA program package can be downloaded free of charge for non-commercial and non-military use.

A collection of examples input decks for ASTRA:

Manual Example	To get started: Input decks from the Astra Manual
Aperture	Using the namelist 'Aperture'

A collection of utility programs provided by various users:

Converts Astro output particle distribution to Flagant SDDS compliant input

Index of /~mpyflo/Astra_for_WindowsPC

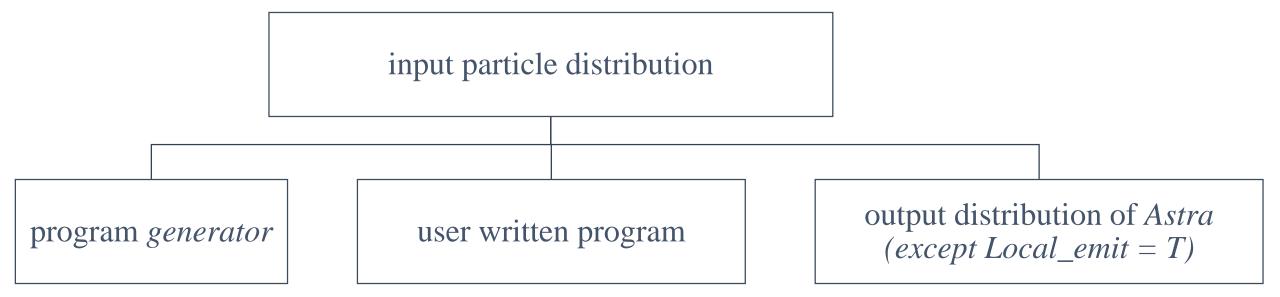
	Name	Last modified	Size	Description
₽	Parent Directory	28-Aug-2017 11:26	-	
10	Astra.exe	12-Oct-2017 16:56	2.2M	
10	fieldplot.exe	02-Jun-2017 09:46	2.7M	
10	generator.exe	23-Mar-2017 15:34	981k	
10	lineplot.exe	15-Apr-2016 14:36	1.6м	
10 01 10	postpro.exe	04-Aug-2017 15:25	2.3M	

Apache/1.3.41 Server at www.desy.de Port 80

Introduction I

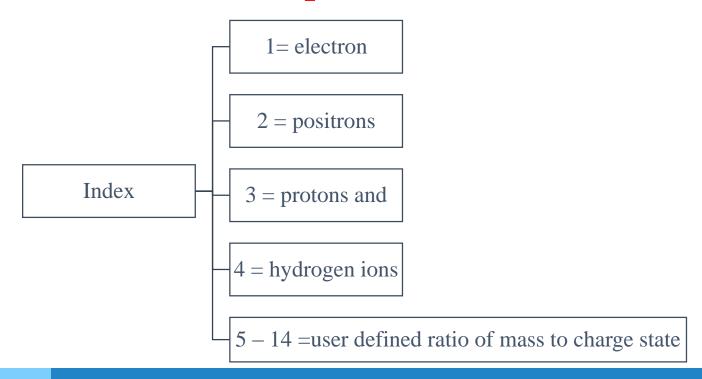
- ▶ The Astra (**A** Space Charge Tracking Algorithm) program package consists of the five parts:
- ▶ 1. The program *generator* which may be used to generate an initial particle distribution.
- ▶ 2. The program *Astra* which tracks the particles under the influence of external and internal fields.
- ▶ 3. The graphic program *fieldplot* which is used to display electromagnetic fields of beam line elements and space charge fields of particle distributions.
- ▶ 4. The graphic program *postpro* which is used to display phase space plots of particle distributions and allows a detailed analysis of the phase space distribution.
- > 5. The graphic program *lineplot*, which is used to display the beam size, emittance, bunch length etc. versus the longitudinal beam line position or versus a scanned parameter, respectively.

Introduction II


- *Astra* is written in Fortran 90 and runs on different platforms.
- ▶ The minimal form of a namelist is:
- only those namelist which are required need to be specified and they can appear in arbitrary order.

& Name

- ▷ a namelist parameters are specified in the form: 'name = Value
- Specifications are separated by a comma or a line feed.
- Character input (keywords and file names) has in general to be enclosed by quotation marks ('').
- The input of keywords is not case sensitive. general only the first character(s) are significant (bold letters in this manual)


Definition of the initial particle distribution

- be distribution file name should end with the extension '.ini' or with '.zpos.run'. zpos = four digit number & run = three digit number specifying the run number
- Mix different kinds of particles as an initial particle distribution

	1	2	3	4	5	6	7	8	9	10
Parameter	X	у	Z	px	ру	pz	clock	macro charge	particle index	status
								charge	macx	nag
Unit	m	m	m	eV/c	eV/c	eV/c	ns	nC		

- ▶ The first line = the reference particle
- **►** Longitudinal particle coordinates, i.e. z, pz and t are given relative to the reference particle.

status flags

Status	Comment	Status
flag		
-99 ¹	average position of distribution	will not be tracked
-95	ref. particle only; Z ₀ > ZStop	lost
-94	ref. particle only; more than Max_Step steps	lost
-92 ²	probe rejected by space charge at the cathode	lost
-91 ²	rejected by space charge at the cathode	lost
-90	probe particle before Z _{min}	lost
-89	particle before Z _{min}	lost
-86³	probe particle traveling backwards	lost
-85 ³	particle traveling backwards	lost
-31	particle discarded by user	lost
-30	particle preliminary discarded by user	lost
-22	probe secondary electron, lost on aperture	lost
-21	secondary electron, lost on aperture	lost
-20	passive probe particle, lost on aperture	lost
-19	passive particle, lost on aperture	lost
-17	trajectory probe particle, lost on aperture	lost
-15	standard particle, lost on aperture	lost
-6	passive probe particle, at the cathode	not yet started
-5	passive particle, at the cathode	not yet started
4	secondary particle	not yet started
-3	trajectory probe particle at the cathode	not yet started
-1	standard particle, at the cathode	not yet started
0	passive probe particle	tracking*
1	passive particle	tracking ⁴
3	trajectory probe particle	tracking
4	cross over particle ³	tracking
5	standard particle	tracking
6, 933	probe secondary electrons of generation 1,	tracking
	210 or higher	
8, 1135	secondary electrons of generation 1, 210	tracking
	or higher	
		· · · · · · · · · · · · · · · · · · ·

Passive particles

- Particles with a negative status flag are either lost by some mechanism or not yet started.
- Passive particles are tracked as normal particles;
- But not taken into account for
 - The calculation of internal beam parameters; emittance, size, etc.
 - The set-up of the space charge grid
 - The calculation of space charge fields

generator

- beginster generates an initial particle distribution file.
- The input file for *generator* has to have the extension '.in'.
- The default file name is 'generator.in'.
- The input file consists of a single namelist named INPUT.

```
&INPUT
 FNAME = 'Example.ini'
 Add=FALSE, N add=0,
 IPart=10200, Species='electrons'
 Probe=True, Noise reduc=f,
                                 Cathode=F
 O total=1.0E0
 Ref zpos=0.0E0, Ref Ekin=2.0E0
 Dist z='u', sig z=1.0E0,
 Dist pz='u', sig Ekin=1.5,
 Dist x='g', sig x=0.75E0,
 Dist_px='g', Nemit_x=1.0E0,
Dist_y='g', sig_y=0.75E0,
 Dist_py='g', Nemit_y=1.0E0,
```

1D distribution: uniform distribution

$$f(x) = \frac{1}{FWHM}$$

$$f(x) = \frac{1}{FWHM}$$
 for $|x| \le \frac{FWHM}{2}$

elsewhere

rms value

$$\sigma = \frac{FWHM}{2\sqrt{3}}$$

Dimension	Key word	Parameter	unit
		<i>FWHM</i> or σ	
temporal ¹	Dist_z = 'uniform'	Lt or sig_clock	ns
longitudinal ² z	Dist_z = 'uniform'	Lz or sig_z	mm
longitudinal E _{kin}	Dist_pz = 'uniform'	LE or sig_Ekin or	keV or keVmm
		emit_z	
transverse x	$Dist_x = 'uniform'$	Lx or sig_x	mm
transverse y	Dist_y = 'uniform'	Ly or sig_y	mm
transverse p _x	Dist_px = 'uniform'	Lpx or sig_px or	eV/c or mrad mm
		Nemit_x	
transverse p _y	Dist_py = 'uniform'	Lpy or sig_py or	eV/c or mrad mm
		Nemit_y	

¹ active if Cathode = TRUE, ² active if Cathode = FALSE

 \triangleright

1D distributions

inverted parabola (longitudinal)

■ The inverted parabola distribution produces linear longitudinal space charge fields.

$$f(z) = \frac{3}{4z_{\text{max}}} \left(1 - \frac{z^2}{z_{\text{max}}^2} \right) \quad |z| \le z_{\text{max}}$$

Gaussian distribution

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\frac{x^2}{\sigma^2}\right)$$

FWHM value
$$FWHM = 2\sqrt{-2\ln(0.5)} = 2.35\sigma$$

> truncated Gaussian distribution

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma_{imp}} \exp\left(-\frac{1}{2}\frac{x^2}{\sigma_{imp}^2}\right) \qquad \text{for } |x| \le C_{Cut}\sigma_{imp} \qquad \frac{C_{Cut}\sigma_{imp}}{\sqrt{3}} \le \sigma_{out} \le \sigma_{imp}$$

2D distributions

$$f(x, y) = \frac{1}{\pi r^2}$$
 for $x^2 + y^2 \le r^2$

radial uniform distribution

0 elsewhere

Dimension	Key word	Parameter r or σ	unit
transverse x, y	Dist_x = 'radial uniform'	Lx or sig_x	mm
transverse p_x , p_y	Dist_px = 'radial uniform'	Lpx or sig_px or Nemit_x	eV/c or mrad mm

(truncated) 2D-Gaussian distribution

Dimension	Key word	Parameter σ_{inp} , C_{Cut}	unit
transverse x, y	Dist_x = '2D-	sig_x, C_sig_x	mm, dim. less
	Gaussian'		
transverse p _x , p _y	$Dist_px = '2D-$	sig_px or Nemit_x,	eV/c or mrad mm,
	Gaussian'	C_sig_px	dim. less

3D distributions

isotropic momentum distribution

$$p_x^2 + p_y^2 + p_z^2 = P^2 = E_{kin}^2 + 2$$

Dimension	Key word	Parameter E_{kin}	unit
p_x, p_y, p_z	Dist_pz = 'isotropic'	LE	keV

photo emission from a Fermi-Dirac distribution

$$\sigma p_x = \sigma p_y = \sqrt{\frac{E_{phot} - \phi_{eff}}{3m_0 c^2}}$$

Dimension	Key word	Parameter	units
		$\Phi_{ ext{eff}}$, E_{phot}	
p _x , p _y , p _z	Dist_pz = ' FD_300 '	phi_eff,	eV
		E_photon	

uniformly filled ellipsoid

$$f(x, y, z) = \frac{3}{4\pi L x \, L y \, L z} \qquad \text{for } \frac{x^2}{L_x^2} + \frac{y^2}{L_y^2} + \frac{z^2}{L_z^2} \le 1$$

for
$$\frac{x^2}{L_x^2} + \frac{y^2}{L_y^2} + \frac{z^2}{L_z^2} \le 1$$

CAVITY I

- ▶RF, static electric and magnetic fields and fields generated by linear plasmas.
- cavity fields may be generated by analytical calculations, measurements or numerical codes.
- ⊳field table z-position (column 1 in m) & longitudinal on-axis electric field amplitude (column 2 in arbitrary units)
- ▶ The transverse field components are calculated from the derivatives of the on-axis field.
- The polynomial expansion extends to 1st order or 3st order.
- ▶ The polynomial expansion is perfect already in first order for a pure sine-like spatial wave.

CAVITY II

- Static electric fields: The name should start with 'DC' or the frequency, Nue(), should be set to zero.
- Static magnetic fields: 3D field map
- ▶ TE modes: the file name has to start with 'TE_'.
- Dipole modes: 3D field map
- Traveling wave structures: The file name has to start with 'TWS'. superposition of real and imaginary parts
 - The transverse field are derived according to a 1st order polynomial expansion least one RF period plus the input and output coupler cells
 - file a first line is added
 - For a beta matched structure a wave number has to be specified