Holographic Entanglement of Purification near a Critical Point

Internation EoP and its Holographic Dual calculation of holographic Dual calculation of \overline{O}

B.Amrahi*∗*, M.Ali-Akbari*†* , M.Asadi*‡*

[∗] b*−*amrahi@sbu.ac.ir *†* m*−*aliakbari@sbu.ac.ir

‡ m*−*asadi@ipm.ir

∗,† Shahid Beheshti University *‡* Institute for Research in Fundamental Sciences (IPM)

June 2020

Outline

¹ Introduction

- Holographic principle
- Entanglement Entropy and Mutual Information
- ² EoP and its Holographic Dual
	- Entanglement of purification
	- Entanglement wedge cross section
- ³ calculation of holographic EoP
- ⁴ background
- ⁵ nuremical result
- ⁶ References

AdS/CFT correspondence

Holographic principle

 $N = 4$ *SU*(*N*) SYM theory is equivalent to type *IIB* string theory in $AdS_5 \times S_5$

• gauge-gravity duality

Introduction **EoP** and its Holographic Dual calculation of holographic EoP background nuremical result References

AdS/CFT correspondence

Holographic principle

 $N = 4$ *SU*(*N*) SYM theory is equivalent to type *IIB* string theory in $AdS_5 \times S_5$

gauge-gravity duality

any strongly coupled CFT is equivalent to a classical gravity in one higher dimension

Introduction **EoP** and its Holographic Dual calculation of holographic EoP background nuremical result References

Definition

Entanglement Entropy and Mutual Information

When the total Hilbert space *Htot* is decomposed into a direct product $\mathcal{H}_{tot} = \mathcal{H}_A \otimes \mathcal{H}_{Ac}$, we define the reduced density matrix ρ_A by $\rho_A = \mathcal{Tr}_{Ac}\rho_{tot}$, where *ρtot* is the total density matrix. The entanglement entropy *S*(*ρA*) for the subsystem *A* is defined by

Introduction **EoP** and its Holographic Dual calculation of holographic EoP background nuremical result References

$$
S(\rho_A) = -\mathit{Tr}\rho_A \log \rho_A \tag{1}
$$

I(*A* : *B*) is mutual information between subsystems *A* and *B* and defined by this equation

$$
I(A:B) = S_A + S_B - S_{A\cup B} \tag{2}
$$

Entanglement Entropy and Mutual Information

Holographic Entanglement Entropy

Introduction **EoP** and its Holographic Dual calculation of holographic EoP background nuremical result References

The holographic entanglement entropy is given by

$$
S(\rho_A) = \frac{Area(\Gamma_A^{min})}{4G_N} \tag{3}
$$

EoP and its Holographic Dual calculation of holographic \bullet Entanglement of purif Purification

 ρ_{AB} is a density matrix on a bipartite system $\mathcal{H}_A\otimes\mathcal{H}_B$. We can purify this mixed state by enlarging its Hilbert space. $|\psi\rangle_{AA'BB'} \in \mathcal{H}_{AA'} \otimes \mathcal{H}_{BB'}$ is a purification of ρ_{AB} , so that $Tr_{A'B'}|\psi\rangle_{AA'BB'}\langle\psi| = \rho_{AB}$. There exists infinite ways to purify ρ_{AB} .

EoP and its Holographic Dual $O \bullet \odot \odot$ nent of purification

Entanglement of purification

EoP is given by

$$
E_p(\rho_{AB}) = \min_{\rho_{AB} = Tr_{A'B'}(|\psi\rangle_{AA'BB'}\langle\psi|)} S(\rho_{AA'})
$$
(4)

where S_{AA} ^{*'*} is the entanglement between $AA' = A \cup A'$ and $BB' = B \cup B'$.

$$
S_{AA'}(\rho_{AA'}) = -\mathit{Tr}(\rho_{AA'}\log(\rho_{AA'}))
$$
\n⁽⁵⁾

and $\rho_{AA'} = Tr_{BB'}(|\psi\rangle_{AA'BB'}\langle\psi|)$

Entanglement wedge cross section Entanglement wedge

 EoP and its Holographic Dual OO O O

The entanglement wedge of subsystem *A* is defined as the domain of dependence of *MA*. *M^A* is a surface that is surrounded between *A* and Γ*A*. In fact *M^A* is a time slice of entanglement wedge of subsystem *A*. The entanglement wedge of subsystem *A* is dual with density matrix *ρA*.

Entanglement wedge

Entanglement wedge cross section

Introduction EoP and its Holographic Dual calculation of holographic EoP background nuremical result References

 $\rho_{AB} = \rho_A \otimes \rho_B$
no correlation $(S_{AB} = S_A + S_B)$

$$
M_{AB}=M_A\cup M_B
$$

 $\rho_{AB} \neq \rho_A \otimes \rho_B$
correlated $(S_{AB} > S_A + S_B)$

 $M_{AB} \neq M_A \cup M_B$

Internal its Holographic Dual calculation of holographic EoP background nuremical result References result References and α Entanglement wedge cross section

Entanglement wedge cross section(*Ew*)

E^w is a measure of correlation between A and B and has all properties of EoP. So it is conjectured that the EoP is holographically dual to entanglement wedge cross section of *ρAB*. As a result we have

$$
E_p(\rho_{AB}) = E_w(\rho_{AB})
$$
\n(7)

We consider symmetric case where the length of the both disjoint subsystems is equal and consider a general metric

$$
ds^{2} = f_{1}(r)dt^{2} + f_{2}(r)dr^{2} + f_{3}(r)dx_{i}^{2} , i = 1, 2, ..., d
$$
 (8)

r → ∞ is the AdS boundary.

$$
Ew(A:B) = \frac{L^{d-1}}{4G_N} \int_{\substack{r^*\\2f+1'}}^{r^*_{j'}} dr \sqrt{f_2 f_3^{d-1}}
$$
(9)

$$
\frac{f'}{2} = \int_{r_{f}^{*}}^{\infty} dr \sqrt{\frac{f_{2} f_{3*}^{d}}{f_{3} (r_{3}^{d} - r_{3*}^{d})}}
$$
(10)

background with a critical point

$$
ds^{2} = \exp^{2A(R)}(-h(r)dt^{2} + d\vec{x}^{2}) + \frac{\exp^{2B(r)}}{h(r)}dr^{2},
$$
\n(11)

 I EoP and its Holographic Dual calculation of holographic EoP **background** $OOOOO$

where in this case $d = 3$ and

$$
A(r) = \ln\left(r(1 + \frac{Q^2}{r^2})^{\frac{1}{6}}\right), \quad B(r) = -\ln\left(r(1 + \frac{Q^2}{r^2})^{\frac{1}{3}}\right), \quad h(r) = 1 - \frac{M^2}{r^2(r^2 + Q^2)}.
$$

$$
h(r_h) = 0 \Longrightarrow r_h = \sqrt{\frac{\sqrt{Q^4 + 4M^2} - Q^2}{2}}.
$$
(12)

$$
T = \frac{2r_h^2 + Q^2}{2\pi\sqrt{Q^2 + r_h^2}}, \quad \mu = \frac{Qr_h}{\sqrt{Q^2 + r_h^2}}.
$$
\n(13)

It was shown that there is a critical point at $\frac{\mu}{7} = (\frac{\mu}{7})_* = \frac{\pi}{\sqrt{2}}$ ($\frac{Q}{r_h} = \sqrt{2}$) and the solutions are thermodynamically stable for $\frac{Q}{r_h}<\sqrt{2}$.

$$
E_p \equiv \frac{4G_N}{L^2} E_w = \frac{L^2}{4G_N} \int_{r_b^*}^{r_{2l+1}^*} dr \frac{r}{1 - \frac{M^2}{r^2(r^2 + Q^2)}}.
$$
 (14)

background without a critical point

we consider RN-AdS*d*+² metric in the AdS radius unit

Introduction EoP and its Holographic Dual calculation of holographic EoP **background**
0000 00000

$$
ds^{2} = -r^{2}f(r)dt^{2} + \frac{1}{r^{2}f(r)}dr^{2} + r^{2}d\vec{x}^{2}, \qquad f(r) = 1 - \frac{M}{r^{d+1}} + \frac{Q^{2}}{r^{2d}}.
$$
 (15)

$$
M = r_h^{d+1} + \frac{Q^2}{r_h^{d-1}}.
$$
\n(16)

$$
T = \frac{r_h}{4\pi} \left((d+1) - (d-1) \frac{Q^2}{r_h^2} \right), \qquad \mu = \sqrt{\frac{d}{2(d-1)}} \frac{Q}{r_h^{d-1}}.
$$
 (17)

$$
\frac{\mu}{T} = \frac{1}{\sqrt{2(d-1)}} \frac{4\pi\sqrt{d}Qr_h^d}{(d+1)r_h^{2d} - (d-1)Q^2}.
$$
\n(18)

$$
E_p \equiv \frac{4G_N}{L^2} E_w = \int_{r_{2l+l'}^*}^{r_{l'}^*} dr \frac{r^{d-2}}{\sqrt{1 - \frac{M}{r^{d+1}} + \frac{Q^2}{r^{2d}}}}.
$$
(19)

We have checked the inequality between EoP and the mutual information, i.e. $\frac{1}{2} \leq E_p$

Figure: The EoP and $I/2$ with respect to I' for $I = 0.5$ (left) and $I = 0.8$ (right).

Figure: E_p and $I/2$ with respect to *l* for $I' = 0.1$ (left) and $I' = 0.2$ (right).

The EoP with respect to $\frac{\mu}{T}$ for $I' = 0.1$ and differenet values of *l*. T is fixed.

- The EoP is not a monotonic function of scale $\frac{\mu}{7}$.
-
-

The EoP with respect to $\frac{\mu}{T}$ for $I' = 0.1$ and differenet values of *l*. T is fixed.

- The EoP is not a monotonic function of scale $\frac{\mu}{7}$.
- The non-trivial behavior of EoP depends on the values of *l* and *l ′* .

 α

The EoP with respect to $\frac{\mu}{T}$ for $I' = 0.1$ and differenet values of *l*. T is fixed.

- The EoP is not a monotonic function of scale $\frac{\mu}{7}$.
- The non-trivial behavior of EoP depends on the values of *l* and *l ′* .
- There are two or three different configurations, labeled by various values of $\frac{\mu}{\mathcal{T}}$ s, with the same EoP.

Internation EoP and its Holographic Dual calculation of holographic EoP background **nuremical result References**
International References

The EoP with respect to $\frac{\mu}{I}$ for $I' = 0.1$ and $I = 0.5$ in the field theory with (left) and without (right) critical point. The green points show the configuration at fixed μ and blue points show the configuration at fixed *T*.

There are many points with different values of $\frac{\mu}{7}$ which have the same value of EoP.

-
-

The EoP with respect to $\frac{\mu}{I}$ for $I' = 0.1$ and $I = 0.5$ in the field theory with (left) and without (right) critical point. The green points show the configuration at fixed μ and blue points show the configuration at fixed *T*.

- There are many points with different values of $\frac{\mu}{7}$ which have the same value of EoP.
- The EoP or the correlation between the subsystems increases by raising both temperature and/or chemical potential.
-

The EoP with respect to $\frac{\mu}{I}$ for $I' = 0.1$ and $I = 0.5$ in the field theory with (left) and without (right) critical point. The green points show the configuration at fixed μ and blue points show the configuration at fixed *T*.

- There are many points with different values of $\frac{\mu}{7}$ which have the same value of EoP.
- The EoP or the correlation between the subsystems increases by raising both temperature and/or chemical potential.
- The EoP, as a function of $\frac{\mu}{T}$, is not a good observable for distinguishing a critical point between the holographic field theories.

The EoP in terms of $\frac{\mu}{T}$ near the critical point. The cyan, blue and black points show $T = 0.995$, 0.805 and 0.61, respectively. The green points shows $\mu = 1.53$.

- All curves, both fixed temperature and chemical potential curves, converge at $\frac{\mu}{T} = (\frac{\mu}{T})_*$.
-

The EoP in terms of $\frac{\mu}{T}$ near the critical point. The cyan, blue and black points show $T = 0.995$, 0.805 and 0.61, respectively. The green points shows $\mu = 1.53$.

- All curves, both fixed temperature and chemical potential curves, converge at $\frac{\mu}{T} = (\frac{\mu}{T})_*$.
- Near the critical point we have $\frac{dE_p}{d(\frac{\mu}{f})} \propto (\frac{\mu}{T} (\frac{\mu}{T})_*)^{-\theta}$ and therefore close to this point the number *θ*, called critical exponent, describes the variation of the EoP with respect to $\frac{\mu}{l}$

Interior and its Holographic Dual calculation of holographic EoP background **nuremical result** References COOOO **and References**

The EoP with respect to *l* for three different values of $\frac{\mu}{7}$ and $l' = 0.3$. The left (right) panel has been plotted for the field theories dual to (11) $((15)$ with $d = 3)$.

- In the right panel, the EoP and $\frac{\mu}{\tau}$ increase together. However, in the left panel one can see that the EoP has no general behavior and near the critical point it decreases or increases.
-
-

The EoP with respect to *l* for three different values of $\frac{\mu}{7}$ and $l' = 0.3$. The left (right) panel has been plotted for the field theories dual to (11) $((15)$ with $d = 3)$.

- In the right panel, the EoP and $\frac{\mu}{\tau}$ increase together. However, in the left panel one can see that the EoP has no general behavior and near the critical point it decreases or increases.
- For large enough I, the EoP does not change substantially with distance I for given $\frac{\mu}{f}$.

The EoP with respect to *l* for three different values of $\frac{\mu}{7}$ and $l' = 0.3$. The left (right) panel has been plotted for the field theories dual to (11) $((15)$ with $d = 3)$.

- In the right panel, the EoP and $\frac{\mu}{\tau}$ increase together. However, in the left panel one can see that the EoP has no general behavior and near the critical point it decreases or increases.
- For large enough I, the EoP does not change substantially with distance I for given $\frac{\mu}{f}$.
- the EoP, as a function of $\frac{\mu}{I}$ and *l*, distinguishes which theory has a critical point.

Internaction EoP and its Holographic Dual calculation of holographic EoP background **nuremical result References**
Internaction References

The EoP with respect to ℓ for three different values of $\frac{\mu}{\tau}$ and $l = 0.8$. The left (right) panel has been plotted for the field theories dual to (11) $((15)$ with $d = 3)$

- In the right panel, the EoP and $\frac{\mu}{T}$ decrease together. However, in the left panel one can see that the EoP has no general behavior and near the critical point it decreases or increases.
-
-

The EoP with respect to ℓ for three different values of $\frac{\mu}{\tau}$ and $l = 0.8$. The left (right) panel has been plotted for the field theories dual to (11) $((15)$ with $d = 3)$

- In the right panel, the EoP and $\frac{\mu}{T}$ decrease together. However, in the left panel one can see that the EoP has no general behavior and near the critical point it decreases or increases.
- The EoP, as a function of $\frac{\mu}{I}$ and I' , has different treatments in the field theories withand without the critical point.

The EoP with respect to ℓ for three different values of $\frac{\mu}{\tau}$ and $l = 0.8$. The left (right) panel has been plotted for the field theories dual to (11) $((15)$ with $d = 3)$

- In the right panel, the EoP and $\frac{\mu}{T}$ decrease together. However, in the left panel one can see that the EoP has no general behavior and near the critical point it decreases or increases.
- The EoP, as a function of $\frac{\mu}{I}$ and I' , has different treatments in the field theories withand without the critical point.
- The EoP decreases substantially as the distance between subsystems becomes larger.

Internation EoP and its Holographic Dual calculation of holographic EoP background **nuremical result** References of the references of the state References of the references of the references of the references of the refere

The slope of E_p with respect to $\frac{\mu}{l}$. The left diagram has been plot for $l = 0.2$ and $\ell' = 0.1$ and right diagram has been plot for $l = 0.4$ and $\ell' = 0.2$. For the left (right) figure θ will be obtained 0.534 (0.526).

θ is the critical exponent obtained to be equal to 0*.*5 by using Kubo

The slope of E_p with respect to $\frac{\mu}{l}$. The left diagram has been plot for $l = 0.2$ and $\ell' = 0.1$ and right diagram has been plot for $l = 0.4$ and $\ell' = 0.2$. For the left (right) figure θ will be obtained 0.534 (0.526).

θ is the critical exponent obtained to be equal to 0*.*5 by using Kubo commutator for conserved currents and confirmed in other papers by using quasinormal modes, equilibration time and saturation time.

Main References

T. Takayanagi and K. Umemoto, "Entanglement of purification through holographic duality," Nature Phys. **14**, no. 6, 573 (2018) [arXiv:1708.09393 [hep-th]].

Introduction **EoP** and its Holographic Dual calculation of holographic EoP background nuremical result References

- O. DeWolfe, S. S. Gubser and C. Rosen, "Dynamic critical phenomena at a holographic critical point," Phys. Rev. D **84**, 126014 (2011) [arXiv:1108.2029 [hep-th]].
- D. Galante and M. Schvellinger, "Thermalization with a chemical potential from AdS spaces," JHEP **1207**, 096 (2012) [arXiv:1205.1548 [hep-th]].
- B. Amrahi, M. Ali-akbari and M. Asadi, "Holographic entanglement of purification near a critical point," [arXiv:2004.02856 [hep-th]].

Tanx for your attention!

Introduction **EoP** and its Holographic Dual calculation of holographic EoP background nuremical result References