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Outline

® (Holographic)Entanglement entropy

® Entanglement wedge

® holographic duals for entanglement wedge cross-section:
® Entanglement of purification
® Reflected entropy
® Logarithmic negativity

® Odd entropy
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Entropy: a measure of entanglement

® b
A

® Dividing a quantum system into ‘
Aand B: H=HaQ Hp.
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Entropy: a measure of entanglement

1
H
Dividing a quantum system into ‘ : ‘
Aand B: H=Has® Hp. '
B A
1

® Density matrix of a pure state: p = [}

min(dy,dp)

Reduced density matrix: pa =trg(p) = >, pe|i)vu
k=1

It is entangled iff p4 be mixed.

Entanglement entropy

A measure of entanglement in a given quantum state |¢).

0 & pais pure & seprable state

Sa = —tr(paln =
4 (palnpa) {S> 0 < pais mixed & entangled state
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Example: Thermofield double state

W= 3 ) o), 2=
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Example: Thermofield double state

W= 3 ) o), 2=

The reduced density operator for subsystem A

n

pa = tra([v))) = ZZ e PEn |n ) na|

1 _
= e BHA Hal|na) = Eq|na).

® p,is a Gibbs state at temperature 87 1.

—tra[pa(=BHa —1n Z)]

Entanglemet Entropy: S

Thermal entropy for subsystem A

B((Ha) — F) , F=—-InZ
————
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This example shows that you can always purify a thermal system by doubling Hilbert
space as H = Ha ® Hp.
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Remark

This example shows that you can always purify a thermal system by doubling Hilbert
space as H = Ha ® Hp.

Purification

You can always purify a mixed state by enlarging its Hilbert space.
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Aside: Eternal black hole and Thermofield double state (1)

® black hole is dual to a thermal
state of the CFT and the
horizon area is the entropy of
CFT.
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Aside: Eternal black hole and Thermofield double state (1)

® black hole is dual to a thermal
state of the CFT and the
horizon area is the entropy of
CFT.

® By doubling Hilbert space one
can purify a thermal state as
well as thermal state of a CFT
dual to black hole.

® What is the gravity description
of this purification?

® The natural answer: a
maximally extended black hole
geometry with two disjoint
asymptotic region (dual to two
non-interacting CFTs)!

Black hole R
Black hole L
CFT, \
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Aside: Eternal black hole and Thermofield double state (Il)

Eternal Black hole
(maximally extended AdS-Black hole)

® black hole entropy is
entanglement entropy in this
case.

® (Classical smooth connection <

Quantum Entanglement
Einstein-Rosen bridge
(worm hole)

bifurcate horizon
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Ryu-Takayanagi (RT) prescription

Area(ya)
4G

Entanglement entropy in CFT Area of minimal surface

Sn = —tr(pA lnpA) = min
YA

A minimal codimension-2 surface which satisfies:

i) Oya = 0A it) va is homologous to A

const. time slice
—
A - B
b A
B
<~y \
boundary AdS
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Subregion /subregion duality

Information of p, is included in entanglement wedge M 4.

Entanglement Wedge
AdS

Time slice of

Entanglement Wedge M,

Domain of dependence
CFT

t

dual

) \
0
Y

\

|

|

)
1Ya
/

_/

[Czech-Karczmarek-Nogueira-Raamsdonk '12][Wall '12] [Headrick-Hubeny-Lawrence-Rangamani '14]

9/31



EW of AUB

disjoint regions

A B
corrolated no correlation
close regions distant regions

PAB 7 PA R pB PAB = pA X pB
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Entanglement wedge cross-section of AU B

sem TR
Entanglement wedge Le” K e
. s . ~
cross section = r——a. [ R
. : \‘
S A .
. » ,
. & ‘
g AT \
y .
B 1 \ |
No Entanglement wedge
cross section  .==s Lemmal
. N . N
. N . N
. A ‘ A
[} 1 L Al

v g4 Y
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Entanglement wedge cross-section of AU B
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No Entanglement wedge
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What's the dual of entanglement wedge cross-section?

Entanglement wedge and holography for mixed states?!

Entanglement of pu rification? [Takayanagi-Umemoto’17] [Nguyen-Devakul-Halbasch- Zaletel-Swingle'17]

Reflected entropy? [Dutta, Faulkner, ‘19]

Logarithmic negativity? [kudier-Flam Ryu'1g]

Odd entropy? [Tamaoka'1s]

o .7
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Correlation measures for mixed states

) ,p pure state PAB = sz‘ i) (1] mixed
i

® S, is not a measure of correlation for mixed states!
No correlation for pa @) ps, but Sa > 0 for mixed pa.

® Holographic correlation measures for mixed states?
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Correlation measures for mixed states

) ,p pure state PAB = sz‘ i) (1] mixed
i

® S, is not a measure of correlation for mixed states!
No correlation for pa @) ps, but Sa > 0 for mixed pa.

® Holographic correlation measures for mixed states? e.g. mutual information,
entanglement of purification
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Purification

You can always purify a mixed state by enlarging its Hilbert space.

pure state
mixed state pap ) € Hanw @ Hpp

purification A B

A B ﬁ " Py

pap = tryg ([¢) (¥])

Purification is not unique !
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Entanglement of purification iremar Horodecki Leung: Divincenzo, ‘02]

pure state
mixed state pap [y € Hoy @ Hyp

purification 4 B

(4 [ 3| —

pap = tryp ([¥) (¥])

Entanglement between AA’ and BB':

Saar = —tr(paarInpaar)

Entanglement of purification:

E,= min Spa
all purification

It measures both quantum and classical correlations between A and B.

It has an operational interpretation in terms of local operations and a small amount of

communication.
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Properties of entanglement of purification
® F, is bounded above by Sg

E,(A: B) <min (S4, Sp)
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Properties of entanglement of purification
® [, is bounded above by Sg

EP(A : B) S min (SA, SB)

® In a bipartite state that saturates the Araki-Lieb inequality Sap = |S4 — S| implies
E,(A: B) =min (S4, SB)

® F, is monotonic
E,(A: BC) > E,(A: B)

® FEp is bounded below by I/2

® A bound for tripartite system

E,(A: BC) >

® Polygamous for tripartite system
E,(A:B)+ E,(A:C) > E,(A: BC)
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Entanglement of purification and EWC

The entanglement wedge as a new holographic geometry?
with the boundary OMsp = AUBUA ' UB

minimal cross-section

of the entanglement wedge = Entanglement of Purification

AI‘CEL( 111'111’)
E = : AA
w(pap) = min (— =55)
S HEE of p , v

all purification /
over states with
holographic dual?

[Takayanagi-Umemoto'17] [Nguyen-Devakul-Halbasch- Zaletel-Swingle'17]
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Evidences for £, = Ew

® |t satisfies all mentioned inequality.

® A heuristic derivation via MERA

Surface/State duality

pure state )
\\P(BMT» =U W) —~¢
Ul =1 <
) —-» 3

S
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Evidences for £, = Ew

® |t satisfies all mentioned inequality.

® A heuristic derivation via MERA

Surface/State duality
pure state p—

[w(oM) = U W) —,
vfu=1

W) — |

pure state

A B

EP<A : B) = EVV(A : B)
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Reflected entropy [ut, Fautkner, 19]

For any mixed state there is a canonical purification by doubling the Hilbert space:

purification

pap = Zpi Vi)l ———— Vpap= Z Vil g ¥i) 4+ e
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Reflected entropy putts, Fauikner, 19

For any mixed state there is a canonical purification by doubling the Hilbert space:
purification
pa = pilbi)hil ————  pap =Y /Pl ap [¥0) gu e
i i
Example: thermofield double state

1 o purification _
pun = EZ e P na)na| ————  |¥) = ﬁ Z e P52 In4) @ )
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Reflected entropy putts, Fauikner, 19

For any mixed state there is a canonical purification by doubling the Hilbert space:
purification
pap=Y_pilpafil ————  Vpas =D VPili) ap Vi) 4o -
i i
Example: thermofield double state

purification

_ 1 ~BE,
pun = EZ e lnafna| ——— )=

7 > ) © )

reflected entropy:
SR(A R B) = Spax = —tr (pAA* lnpAA*)

paa= = trep~ (|\/pap) (pasl)
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Reflected entropy and EWC puta-Fauikner 19]

canonical punﬁcatlon
Arca(D
Sk(A:B) = rci GAA
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Reflected entropy and EWC

canonical purlﬁcatlon
Area(X
Sr(A: B) = Area(Xa-)

= | = A*
2 \ A
d -
bifurcate horizon
y

[Dutta-Faulkner ‘19]
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Replica trick for reflected entropy

Twice replication by taking n X m copies:

® 1st replication:
1

|'¢’m> =7 ‘pzléz>, 2m € Z+
Vi Php
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Replica trick for reflected entropy

Twice replication by taking n X m copies:

® 1st replication:
1 m/2
[om) = ———|04%), 2mez*
trpyp

® 2nd replication for Renyi entropy

* 1 m n
SP(AA )y, = ——Intr (p;AL)

m/2 m/2
PAz/a ><PAJ/B ’

PR = trppe [Ym)thm| = trpp-

m
t AB
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Replica trick for reflected entropy

Twice replication by taking n X m copies:

® 1st replication:
1 m/2
o) = 7m‘pm/3 > 2m e Z*
trpyp

® 2nd replication for Renyi entropy

* 1 m n
SO (A, = — It (o7 )

m/2 m/2
PAz/a ><PA£; l

P = trppe [PmNtbm| = trps-

m
tr plip
Now one can obtain

_ m/2 m/2|\" . . y
Znym =traax (tres |pu5 PAs , (calculable via twist op’s)

m

where Zi ., = trp’yz and

1 Z ,
In 2" — Sgp= lim S

(n) * _
S (AA )d;m - n—1 (Zl,m)TH myn1
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Logarithmic negativity and EWC [Kudler-Flam,Ryu'18] [Kusuki, Kudler-Flam, Ryu'19]

Renyi entropy is related to area of cosmic brane in the bulk gravity theory [pong 16

e , tension = T Yel

5 — n28n(n;15(")) _ area(cosmic brane) n—1
n
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Logarithmic negativity and EWC [Kudler-Flam,Ryu'18] [Kusuki, Kudler-Flam, Ryu'19]

Renyi entropy is related to area of cosmic brane in the bulk gravity theory [pong 16

e , tension = T Yel

5 — n28n(n;15(")) _ area(cosmic brane) n—1
n

A generalization: Renyi reflected entropy

: (n) n—1 n area(cosmic brane)
SR :n28n<TSKR)> =2 4G

EW

Renyi reflected entropy o< area of back reacted brane on EW
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Logaﬁthnﬂc negaﬁvhy and EVVC [Kudler-Flam,Ryu'18] [Kusuki, Kudler-Flam, Ryu'19]
Partial transposition: (ia, ja|p 4 2%|ka, I8) = (ia, ls|pas|ka, jz)

Negative Eigenvalue of p2% = Entanglement
g g PaB g

Logarithmic Negativity = log <tr pi% ngf) = S'/‘ 2
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Negative Eigenvalue of p2% = Entanglement
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-
= log <tr Pak P A% ) -

For (vacuum) spherically symmetric regions [Hung-Myers-Smolkin-Yale '11]

area(no brane)

Renyi = xS = x G
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Partial transposition: (ia, ja|p 4 2%|ka, I8) = (ia, ls|pas|ka, jz)

Negative Eigenvalue of p2% = Entanglement
g g PaB g

-
= log <tr Pak P A% ) -

For (vacuum) spherically symmetric regions [Hung-Myers-Smolkin-Yale '11]

area(no brane)

Renyi = xS = x G

Logarithmic Negativity = xEw
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Odd entropy and EWC (without purification) framsoks

. = 1 1 Tp\"
So(A: B) = nlolgll T~ [tr (pAB> — 1}7

(nois analytic continuation of an odd integer)
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Odd entropy and EWC (without purification) framsoks

. = 1 1 Tp\"
SO(A.B):nlolglll_no[tr(pAB> —1}7

(nois analytic continuation of an odd integer)

So(A:B)=>|AIn|Ad— > [AdIn|Ad, i eigenvalues ofp}?
;<0 Xi>0

® |t reduces to the EE for pure states.
® |t reduces to the von Neumann entropy for product states.

® By using replica for vacuum and thermal states a holographic CFTa:

So(A:B)=S(A: B)+ Ew(A: B)
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Odd entropy and EWC

A new constraint for Holographic CFTs?!

EW(A:B)>I(A:B)/2 = S,(A:B)—S(A:B)>1IA:B)/2
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Summary: EWC is dual to ...

® Entanglement of purification?[Takayanagi-Umemoto17] [Nguyen-Devakul-Halbasch- Zaletel-Swingle'17]
® Reflected entropy?[putta-Faulkner ‘1]

® | ogarithmic negativity? [Kudier-Flam,Ryu'18]

Odd entropy? [Tamaoka'1s]

® |t seems that all of them are same in holographic CFTs.
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Further investigations
® bit threads description [Bao-Chatwin-Davies-Pollack-Remmen]

® entanglement wedge cross section can not be any axiomatic measures of the
quantum entanglement. [Umemoto '19]

® dynamics of via reflected entropy (vuya-Tamaoka '19]

® checking the Sg = 2FE,, duality at higher order terms in m — 1 for p’ 5 Deong- Kim-Nishida'19]

® generalization for Bulk AdS

[Bao-Cheng'18] [Bao-Halpern '18] [Akers-Rath'19]
me slice
® reconstructing EW via information

metrics [Kusukia-Suzukib-Takayanagia-Umemotoa’19]

[borrowed from 1908.09939]

® EoP in free scalar QFTs [Bhattacharyyas-Takayanagi-Umemoto ‘18]
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Some projects

® Thermal corrections to EWC (with Lifshitz and hyperscaling violating exponents)
and EWCs for entangling region with singular boundaries [Babaci-Mohammadi-Vahidinia '19]
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Some projects

® Thermal corrections to EWC (with Lifshitz and hyperscaling violating exponents)
and EWCs for entangling region with singular boundaries [Babaci-Mohammadi-Vahidinia '19]

® EWCs in Higher Curvature Theories [gabaci-Mohammadi-Vahidinia (to appear)]

® Global Thermal and Electromagnetic Quenches [gabaci-Mohammadi-Vahidinia (to appear)]

ds® = % [—f(r, v)dv2 — 2dvdr+ dx(zi_l] , flrnvy)y=1-— m(v)rd + QQ(U)rQ(d*U

dv = dt — dffr" m(v) = mi1 —|—tan2h(v/vo)
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Time evolution of EWC

Initial config. mid time late time

[Babaei-Mohammadi-Vahidinia (to appear)]
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32

3.5

3.0

Ew

2.5

2.0

[Babaei-Mohammadi-Vahidinia (to appear)]

0 1 2 3 4

Thank you for your attention!

— h=0.4
30} — h=0.421
s — n=0.44 ]

— h=0.46
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