

Entanglement Wedge Cross Section: A Review

Mohammad H. Vahidinia

Institute for Advanced Studies in Basic Sciences (IASBS) and Institute for Research in Fundamental Sciences (IPM)

February 2020

Outline

- *•* (Holographic)Entanglement entropy
- *•* Entanglement wedge
- *•* holographic duals for entanglement wedge cross-section:
	- *•* Entanglement of purification
	- *•* Reflected entropy
	- *•* Logarithmic negativity
	- *•* Odd entropy

• Dividing a quantum system into *A* and *B*: $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$.

- *•* Dividing a quantum system into *A* and *B*: $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$.
- *•* Density matrix of a pure state: *ρ* = *|ψ⟩⟨ψ|*

• Dividing a quantum system into *A* and *B*: $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$.

- *•* Density matrix of a pure state: *ρ* = *|ψ⟩⟨ψ|*
- Reduced density matrix: $\rho_A = \text{tr}_B(\rho) = \sum_{\Delta}^{\min(d_A, d_B)}$ $\min(d_A,d_B)$ $\sum_{k=1}$ $p_k |\psi_k\rangle\langle\psi_k|$

• Dividing a quantum system into *A* and *B*: $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$.

- *•* Density matrix of a pure state: *ρ* = *|ψ⟩⟨ψ|*
- Reduced density matrix: $\rho_A = \text{tr}_B(\rho) = \sum_{\Delta}^{\min(d_A, d_B)}$ $\sum_{k=1}$ $p_k |\psi_k\rangle\langle\psi_k|$
- *•* It is entangled iff *ρ^A* be mixed.

• Dividing a quantum system into *A* and *B*: $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$.

• Density matrix of a pure state: *ρ* = *|ψ⟩⟨ψ|*

• Reduced density matrix:
$$
\rho_A = \text{tr}_B(\rho) = \sum_{k=1}^{\min(d_A, d_B)} p_k |\psi_k\rangle\langle\psi_k|
$$

• It is entangled iff *ρ^A* be mixed.

Entanglement entropy

A measure of entanglement in a given quantum state *|ψ⟩*.

$$
S_A = -\operatorname{tr}(\rho_A\ln\rho_A) = \begin{cases} 0 & \Leftrightarrow \rho_A\text{ is pure} & \Leftrightarrow \quad \text{seprable state} \\ S > 0 & \Leftrightarrow \rho_A\text{ is mixed} & \Leftrightarrow \quad \text{entangled state} \end{cases}
$$

$$
|\psi\rangle = \frac{1}{\sqrt{Z}} \sum_{n} e^{-\beta E_n/2} |n_A\rangle \otimes |n_B\rangle, \qquad Z = \sum_{n} e^{-\beta E_n}
$$

$$
|\psi\rangle = \frac{1}{\sqrt{Z}} \sum_{n} e^{-\beta E_n/2} |n_A\rangle \otimes |n_B\rangle, \qquad Z = \sum_{n} e^{-\beta E_n}
$$

The reduced density operator for subsystem *A*

$$
\rho_A = \text{tr}_B(|\psi\rangle\langle\psi|) = \frac{1}{Z} \sum_n e^{-\beta E_n} |n_A\rangle\langle n_A|
$$

= $\frac{1}{Z} e^{-\beta H_A}$, $H_A |n_A\rangle = E_n |n_A\rangle$.

$$
|\psi\rangle = \frac{1}{\sqrt{Z}} \sum_{n} e^{-\beta E_n/2} |n_A\rangle \otimes |n_B\rangle, \qquad Z = \sum_{n} e^{-\beta E_n}
$$

The reduced density operator for subsystem *A*

$$
\rho_A = \text{tr}_B(|\psi\rangle\langle\psi|) = \frac{1}{Z} \sum_n e^{-\beta E_n} |n_A\rangle\langle n_A|
$$

= $\frac{1}{Z} e^{-\beta H_A}$, $H_A |n_A\rangle = E_n |n_A\rangle$.

• ρ^A is a Gibbs state at temperature *β −*1 .

$$
|\psi\rangle = \frac{1}{\sqrt{Z}} \sum_{n} e^{-\beta E_n/2} |n_A\rangle \otimes |n_B\rangle, \qquad Z = \sum_{n} e^{-\beta E_n}
$$

The reduced density operator for subsystem *A*

$$
\rho_A = \text{tr}_B(|\psi\rangle\langle\psi|) = \frac{1}{Z} \sum_n e^{-\beta E_n} |n_A\rangle\langle n_A|
$$

= $\frac{1}{Z} e^{-\beta H_A}$, $H_A |n_A\rangle = E_n |n_A\rangle$.

• ρ^A is a Gibbs state at temperature *β −*1 .

Entanglement Entropy:	\n $S_A = -\operatorname{tr}_A \left[\rho_A (-\beta H_A - \ln Z) \right]$ \n
=\n $\underbrace{\beta (\langle H_A \rangle - F)}_{\text{Thermal entropy for subsystem } A}, \quad F = -\frac{1}{\beta} \ln Z.$ \n	

Remark

This example shows that you can always purify a thermal system by doubling Hilbert space as $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$.

Remark

This example shows that you can always purify a thermal system by doubling Hilbert space as $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$.

Purification

You can always purify a mixed state by enlarging its Hilbert space.

• **black hole is dual to a thermal** state of the CFT and the horizon area is the entropy of CFT.

- **black hole is dual to a thermal** state of the CFT and the horizon area is the entropy of CFT.
- *•* By doubling Hilbert space one can purify a thermal state as well as thermal state of a CFT dual to black hole.

- **black hole is dual to a thermal** state of the CFT and the horizon area is the entropy of CFT.
- *•* By doubling Hilbert space one can purify a thermal state as well as thermal state of a CFT dual to black hole.
- What is the gravity description of this purification?

- **black hole is dual to a thermal** Black hole L. state of the CFT and the horizon area is the entropy of CFT.
- *•* By doubling Hilbert space one can purify a thermal state as well as thermal state of a CFT dual to black hole.

• What is the gravity description

of this purification?

Black hole R CFT. CFT_B

 $\sum e^{-\beta \frac{E_n}{2}} |n_L\rangle \otimes |n_R\rangle = |\psi\rangle$ \boldsymbol{n}

 $\sum e^{-\beta \frac{E_n}{2}} n_L \otimes n_R =$

• The natural answer: a maximally extended black hole geometry with two disjoint asymptotic region (dual to two non-interacting CFTs)!

Eternal Black hole (maximally extended AdS-Black hole)

7/31

- *•* black hole entropy is entanglement entropy in this case.
- *•* Classical smooth connection *⇔* Quantum Entanglement

Ryu-Takayanagi (RT) prescription [Ryu-Takayangi '06]

$$
S_A = -\operatorname{tr}(\rho_A \ln \rho_A) = \min_{\gamma_A} \frac{\operatorname{Area}(\gamma_A)}{4G}
$$

Entanglement entropy in CFT Area of minimal surface

A minimal codimension-2 surface which satisfies:

i) $\partial \gamma_A = \partial A$ *ii*) γ_A is homologous to *A*

Subregion/subregion duality

Information of ρ_A is included in entanglement wedge M_A .

[Czech-Karczmarek-Nogueira-Raamsdonk '12][Wall '12] [Headrick-Hubeny-Lawrence-Rangamani '14]

EW of $A \cup B$

Entanglement wedge cross-section of $A \cup B$

Entanglement wedge cross-section of $A \cup B$

What's the dual of entanglement wedge cross-section?

Entanglement wedge and holography for mixed states?!

- Entanglement of purification? [Takayanagi-Umemoto'17] [Nguyen-Devakul-Halbasch- Zaletel-Swingle'17]
- Reflected entropy? [Dutta, Faulkner, '19]
- Logarithmic negativity? [Kudler-Flam, Ryu'18]
- Odd entropy? [Tamaoka'18]
- *•* ...?!

Correlation measures for mixed states

- *• S^A* is not a measure of correlation for mixed states! No correlation for $\rho_A \bigotimes \rho_B$, but $S_A > 0$ for mixed ρ_A .
- *•* Holographic correlation measures for mixed states?

Correlation measures for mixed states

- *• S^A* is not a measure of correlation for mixed states! No correlation for $\rho_A \bigotimes \rho_B$, but $S_A > 0$ for mixed ρ_A .
- *•* Holographic correlation measures for mixed states? e.g. mutual information, entanglement of purification

Purification

You can always purify a mixed state by enlarging its Hilbert space.

pure state $|\psi\rangle \in \mathcal{H}_{AA'} \otimes \mathcal{H}_{BB'}$ mixed state ρ_{AB} purification \boldsymbol{B} \boldsymbol{A} \boldsymbol{B} B^+ A^+

$$
\rho_{AB} = \operatorname{tr}_{A'B'} (\ket{\psi} \bra{\psi})
$$

Purification is not unique !

Entanglement of purification [Terhal- Horodecki- Leung- DiVincenzo, '02]

$$
\rho_{AB} = \operatorname{tr}_{A'B'}(\ket{\psi}\bra{\psi})
$$

Entanglement between *AA′* and *BB′* :

$$
S_{AA'} = -\operatorname{tr}(\rho_{AA'}\ln\rho_{AA'})
$$

Entanglement of purification:

$$
E_p \equiv \min_{\text{all purification}} S_{AA'}
$$

It measures both quantum and classical correlations between *A* and *B*.

It has an operational interpretation in terms of local operations and a small amount of communication.

• E^p is bounded above by *S^E*

 $E_p(A:B) \leq \min(S_A, S_B)$

• E^p is bounded above by *S^E*

$$
E_p(A:B) \leq \min\left(S_A, S_B\right)
$$

• In a bipartite state that saturates the Araki-Lieb inequality $S_{AB} = |S_A - S_B|$ implies $E_p(A:B) = \min(S_A, S_B)$

• E^p is bounded above by *S^E*

$$
E_p(A:B) \leq \min\left(S_A, S_B\right)
$$

- In a bipartite state that saturates the Araki-Lieb inequality $S_{AB} = |S_A S_B|$ implies $E_p(A:B) = \min(S_A, S_B)$
- *• E^p* is monotonic

 $E_p(A : BC) \ge E_p(A : B)$

• E^p is bounded above by *S^E*

$$
E_p(A:B) \leq \min\left(S_A, S_B\right)
$$

- In a bipartite state that saturates the Araki-Lieb inequality $S_{AB} = |S_A S_B|$ implies $E_p(A:B) = \min(S_A, S_B)$
- *• E^p* is monotonic

$$
E_p(A:BC) \ge E_p(A:B)
$$

• E^P is bounded below by *I/*2

$$
E_p(A:B) \ge \frac{I(A:B)}{2}
$$

• E^p is bounded above by *S^E*

$$
E_p(A:B) \leq \min\left(S_A, S_B\right)
$$

- In a bipartite state that saturates the Araki-Lieb inequality $S_{AB} = |S_A S_B|$ implies $E_p(A:B) = \min(S_A, S_B)$
- *• E^p* is monotonic

$$
E_p(A:BC) \ge E_p(A:B)
$$

• E^P is bounded below by *I/*2

$$
E_p(A:B) \ge \frac{I(A:B)}{2}
$$

• A bound for tripartite system

$$
E_p(A: BC) \ge \frac{I(A:B)}{2} + \frac{I(A:C)}{2}
$$

• E^p is bounded above by *S^E*

$$
E_p(A:B) \leq \min\left(S_A, S_B\right)
$$

- In a bipartite state that saturates the Araki-Lieb inequality $S_{AB} = |S_A S_B|$ implies $E_p(A : B) = \min(S_A, S_B)$
- *• E^p* is monotonic

$$
E_p(A:BC) \ge E_p(A:B)
$$

• E^P is bounded below by *I/*2

$$
E_p(A:B) \ge \frac{I(A:B)}{2}
$$

• A bound for tripartite system

$$
E_p(A: BC) \ge \frac{I(A:B)}{2} + \frac{I(A:C)}{2}
$$

• Polygamous for tripartite system

 $E_p(A : B) + E_p(A : C) \ge E_p(A : BC)$

Entanglement of purification and EWC

The entanglement wedge as a new holographic geometry? w ith the boundary $\partial M_{AB} = A \cup B \cup A' \cup B'$

minimal cross-section m mmmal cross-section m = Entanglement of Purification of the entanglement wedge

[Takayanagi-Umemoto'17] [Nguyen-Devakul-Halbasch- Zaletel-Swingle'17]

Evidences for $E_p = E_W$

- *•* It satisfies all mentioned inequality.
- *•* A heuristic derivation via MERA

Evidences for $E_p = E_W$

- *•* It satisfies all mentioned inequality.
- *•* A heuristic derivation via MERA

Reflected entropy [Dutta, Faulkner, '19]

For any mixed state there is a canonical purification by doubling the Hilbert space:

$$
\rho_{AB} = \sum_{i} p_i |\psi_i\rangle\langle\psi_i| \quad \xrightarrow{\text{purification}} \quad \sqrt{\rho_{AB}} = \sum_{i} \sqrt{p_i} |\psi_i\rangle_{AB} |\psi_i\rangle_{A^*B^*}
$$

Reflected entropy [Dutta, Faulkner, '19]

For any mixed state there is a canonical purification by doubling the Hilbert space:

$$
\rho_{AB}=\sum_{i}p_{i}\left|\psi_{i}\rangle\!\langle\psi_{i}\right|\quad\xrightarrow{\text{purification}}\quad\sqrt{\rho_{AB}}=\sum_{i}\sqrt{p_{i}}\left|\psi_{i}\right\rangle_{AB}\left|\psi_{i}\right\rangle_{A^{*}B^{*}}
$$

Example: thermofield double state

$$
\rho_{th} = \frac{1}{Z} \sum_n e^{-\beta E_n} \left| n_A \rangle \langle n_A \right| \quad \xrightarrow{\text{purification}} \quad \left| \psi \right\rangle = \frac{1}{\sqrt{Z}} \sum_n e^{-\beta E_n/2} \left| n_A \right\rangle \otimes \left| n_B \right\rangle
$$

Reflected entropy [Dutta, Faulkner, '19]

For any mixed state there is a canonical purification by doubling the Hilbert space:

$$
\rho_{AB}=\sum_{i}p_{i}\left|\psi_{i}\rangle\!\langle\psi_{i}\right|\quad\xrightarrow{\text{purification}}\quad\sqrt{\rho_{AB}}=\sum_{i}\sqrt{p_{i}}\left|\psi_{i}\right\rangle_{AB}\left|\psi_{i}\right\rangle_{A^{*}B^{*}}
$$

Example: thermofield double state

$$
\rho_{th} = \frac{1}{Z} \sum_n e^{-\beta E_n} \left| n_A \rangle\!\langle n_A \right| \quad \xrightarrow{\text{purification}} \quad \left|\psi\right> = \frac{1}{\sqrt{Z}} \sum_n e^{-\beta E_n/2} \left| n_A \right> \otimes \left| n_B \right>
$$

reflected entropy:

$$
S_R(A:B) \equiv S_{AA^*} = -\operatorname{tr}(\rho_{AA^*} \ln \rho_{AA^*})
$$

$$
\rho_{AA^*} = \operatorname{tr}_{BB^*}(|\sqrt{\rho_{AB}}\rangle \langle \rho_{AB}|)
$$

Reflected entropy and EWC [Dutta-Faulkner '19]

Reflected entropy and EWC

Replica trick for reflected entropy

Twice replication by taking $n \times m$ copies:

• 1st replication:

$$
|\psi_m\rangle = \frac{1}{\sqrt{\text{tr}\,\rho_{AB}^m}} \left|\rho_{AB}^{m/2}\right\rangle, \quad 2m\in\mathbb{Z}^+
$$

Replica trick for reflected entropy

Twice replication by taking $n \times m$ copies:

• 1st replication:

$$
|\psi_m\rangle = \frac{1}{\sqrt{\text{tr}\,\rho_{AB}^m}} \left| \rho_{AB}^{m/2} \right\rangle, \quad 2m \in \mathbb{Z}^+
$$

• 2nd replication for Renyi entropy

$$
S^{(n)}(AA^*)_{\psi_m} = \frac{1}{n-1} \ln \text{tr} \left(\rho_{AA^*}^{(m)} \right)^n
$$

$$
\rho_{AA^*}^{(m)} = \text{tr}_{BB^*} |\psi_m\rangle\langle\psi_m| = \frac{1}{\text{tr}\,\rho_{AB}^{m}} \text{tr}_{BB^*} |\rho_{AB}^{m/2}\rangle\langle\rho_{AB}^{m/2}|
$$

Replica trick for reflected entropy

Twice replication by taking $n \times m$ copies:

• 1st replication:

$$
|\psi_m\rangle = \frac{1}{\sqrt{\text{tr}\,\rho_{AB}^m}} \left| \rho_{AB}^{m/2} \right\rangle, \quad 2m \in \mathbb{Z}^+
$$

• 2nd replication for Renyi entropy

$$
S^{(n)}(AA^*)_{\psi_m} = \frac{1}{n-1} \ln \text{tr} \left(\rho_{AA^*}^{(m)} \right)^n
$$

$$
\rho_{AA^*}^{(m)} = \text{tr}_{BB^*} |\psi_m\rangle\langle\psi_m| = \frac{1}{\text{tr}\,\rho_{AB}^{m}} \text{tr}_{BB^*} |\rho_{AB}^{m/2}\rangle\langle\rho_{AB}^{m/2}|
$$

Now one can obtain

$$
Z_{n,m} \equiv \text{tr}_{AA^*} \left(\text{tr}_{BB^*} \left| \rho_{AB}^{m/2} \right\rangle \left\langle \rho_{AB}^{m/2} \right| \right)^n, \quad \text{(calculusble via twist op's)}
$$

where $Z_{1,m} = \text{tr} \rho_{AB}^m$ and

$$
S^{(n)}(AA^*)_{\psi_m} = \frac{1}{n-1} \ln \frac{Z_{n,m}}{(Z_{1,m})^n}, \quad \longrightarrow \quad S_R = \lim_{m,n \to \infty} S^{(nm)}
$$

Renyi entropy is related to area of cosmic brane in the bulk gravity theory [Dong '16]

$$
\tilde{S}^{(n)}\equiv n^2\partial_n\bigg(\frac{n-1}{n}S^{(n)}\bigg)=\frac{\text{area}(\text{cosmic brane})}{4G},\quad \text{tension}=\frac{n-1}{4nG}
$$

Renyi entropy is related to area of cosmic brane in the bulk gravity theory [Dong '16]

$$
\tilde{S}^{(n)}\equiv n^2\partial_n\bigg(\frac{n-1}{n}S^{(n)}\bigg)=\frac{\text{area}(\text{cosmic brane})}{4G},\quad \text{tension}=\frac{n-1}{4nG}
$$

A generalization: Renyi reflected entropy

$$
\tilde{S_R}^{(n)}\equiv n^2\partial_n\bigg(\frac{n-1}{n}S_R^{(n)}\bigg)=2\frac{\text{area}(\text{cosmic brane})}{4G}\bigg|_{\text{EW}}
$$

Renyi entropy is related to area of cosmic brane in the bulk gravity theory $[Domg 16]$

$$
\tilde{S}^{(n)}\equiv n^2\partial_n\bigg(\frac{n-1}{n}S^{(n)}\bigg)=\frac{\text{area}(\text{cosmic brane})}{4G},\quad \text{tension}=\frac{n-1}{4nG}
$$

A generalization: Renyi reflected entropy

$$
\tilde{S_R}^{(n)}\equiv n^2\partial_n\bigg(\frac{n-1}{n}S_R^{(n)}\bigg)=2\frac{\text{area}(\text{cosmic brane})}{4G}\bigg|_{\text{EW}}
$$

Renyi reflected entropy *∝* area of back reacted brane on EW

Partial transposition: $\langle i_A, j_B | \rho_{AB}^{T_B} | k_A, l_B \rangle \equiv \langle i_A, l_B | \rho_{AB} | k_A, j_B \rangle$

Negative Eigenvalue of
$$
\rho_{AB}^{T_B} \implies
$$
 Entanglement

Logarithmic Negative
$$
\log \left(\text{tr} \sqrt{\rho_{AB}^{T_B} \rho_{AB}^{T_B \dagger}} \right) = S_R^{(1/2)}
$$

Partial transposition:
$$
\langle i_A, j_B | \rho_{AB}^{T_B} | k_A, l_B \rangle \equiv \langle i_A, l_B | \rho_{AB} | k_A, j_B \rangle
$$

Negative Eigenvalue of
$$
\rho_{AB}^{T_B} \quad \Longrightarrow \quad
$$
 Entanglement

Logarithmic Negative
$$
\log \left(\text{tr} \sqrt{\rho_{AB}^{T_B} \rho_{AB}^{T_B \dagger}} \right) = S_R^{(1/2)}
$$

For (vacuum) spherically symmetric regions [Hung-Myers-Smolkin-Yale '11]

$$
\text{Renyi} = \chi S_E = \chi \frac{\text{area}(\text{no brane})}{4G}
$$

Partial transposition:
$$
\langle i_A, j_B | \rho_{AB}^{T_B} | k_A, l_B \rangle \equiv \langle i_A, l_B | \rho_{AB} | k_A, j_B \rangle
$$

Negative Eigenvalue of
$$
\rho_{AB}^{T_B} \quad \Longrightarrow \quad
$$
 Entanglement

Logarithmic Negative
$$
\log \left(\text{tr} \sqrt{\rho_{AB}^{T_B} \rho_{AB}^{T_B \dagger}} \right) = S_R^{(1/2)}
$$

For (vacuum) spherically symmetric regions [Hung-Myers-Smolkin-Yale '11]

$$
Renyi = \chi S_E = \chi \frac{\text{area}(no \text{ brane})}{4G}
$$

Logarithmic Negativity = χE_W

Odd entropy and EWC (without purification) [Tamaoka'18]

$$
S_o(A:B) \equiv \lim_{n_o \to 1} \frac{1}{1-n_o} \left[\text{tr} \left(\rho_{AB}^{T_B} \right)^{n_o} - 1 \right],
$$

(*no*is analytic continuation of an odd integer)

Odd entropy and EWC (without purification) [Tamaoka'18]

$$
S_o(A:B) \equiv \lim_{n_o \to 1} \frac{1}{1-n_o} \left[\text{tr} \left(\rho_{AB}^{T_B} \right)^{n_o} - 1 \right],
$$

(*no*is analytic continuation of an odd integer)

$$
S_O(A:B) = \sum_{\lambda_i<0} |\lambda_i| \ln |\lambda_i| - \sum_{\lambda_i>0} |\lambda_i| \ln |\lambda_i|, \quad \lambda_i: \text{eigenvalues of } \rho_{AB}^{T_B}
$$

Odd entropy and EWC (without purification) [Tamaoka'18]

$$
S_o(A:B) \equiv \lim_{n_o \to 1} \frac{1}{1-n_o} \left[\text{tr} \left(\rho_{AB}^{T_B} \right)^{n_o} - 1 \right],
$$

(*no*is analytic continuation of an odd integer)

$$
S_O(A:B) = \sum_{\lambda_i<0} |\lambda_i| \ln |\lambda_i| - \sum_{\lambda_i>0} |\lambda_i| \ln |\lambda_i|, \quad \lambda_i: \text{eigenvalues of } \rho_{AB}^{T_B}
$$

- *•* It reduces to the EE for pure states.
- It reduces to the von Neumann entropy for product states.
- By using replica for vacuum and thermal states a holographic CFT₂:

 $S_o(A:B) = S(A:B) + E_W(A:B)$

A new constraint for Holographic CFTs?!

 $EW(A:B) \ge I(A:B)/2 \implies S_o(A:B) - S(A:B) \ge I(A:B)/2$

Summary: EWC is dual to ...

- Entanglement of purification?[Takayanagi-Umemoto'17] [Nguyen-Devakul-Halbasch- Zaletel-Swingle'17]
- Reflected entropy?[Dutta-Faulkner '19]
- Logarithmic negativity? [Kudler-Flam, Ryu'18]
- Odd entropy? [Tamaoka'18]
- *•* It seems that all of them are same in holographic CFTs.

Further investigations

- **bit threads description** [Bao-Chatwin-Davies-Pollack-Remmen]
- *•* entanglement wedge cross section can not be any axiomatic measures of the quantum entanglement. [Umemoto '19]
- dynamics of local quench via reflected entropy [Yuya-Tamaoka '19]
- checking the $S_R = 2E_w$ duality at higher order terms in $m-1$ for ρ_{AB}^m [Jeong- Kim-Nishida'19]
- *•* generalization for multi-partite regions [Bao-Cheng'18] [Bao-Halpern '18] [Akers-Rath'19]
- *•* reconstructing EW via information metrics [Kusukia-Suzukib-Takayanagia-Umemotoa'19]

• EoP in free scalar QFTs [Bhattacharyyaa-Takayanagi-Umemoto '18]

• Thermal corrections to EWC (with Lifshitz and hyperscaling violating exponents) and EWCs for entangling region with singular boundaries [Babaei-Mohammadi-Vahidinia '19]

- *•* Thermal corrections to EWC (with Lifshitz and hyperscaling violating exponents) and EWCs for entangling region with singular boundaries [Babaei-Mohammadi-Vahidinia '19]
- *•* EWCs in Higher Curvature Theories [Babaei-Mohammadi-Vahidinia (to appear)]

- *•* Thermal corrections to EWC (with Lifshitz and hyperscaling violating exponents) and EWCs for entangling region with singular boundaries [Babaei-Mohammadi-Vahidinia '19]
- EWCs in Higher Curvature Theories [Babaei-Mohammadi-Vahidinia (to appear)]
- Global Thermal and Electromagnetic Quenches [Babaei-Mohammadi-Vahidinia (to appear)]

- *•* Thermal corrections to EWC (with Lifshitz and hyperscaling violating exponents) and EWCs for entangling region with singular boundaries [Babaei-Mohammadi-Vahidinia '19]
- EWCs in Higher Curvature Theories [Babaei-Mohammadi-Vahidinia (to appear)]
- Global Thermal and Electromagnetic Quenches [Babaei-Mohammadi-Vahidinia (to appear)]

$$
ds^{2} = \frac{1}{r^{2}} \left[-f(r, v) dv^{2} - 2 dv dr + dx_{d-1}^{2} \right], \quad f(r, v) = 1 - m(v)r^{d} + Q^{2}(v)r^{2(d-1)}
$$

$$
dv = dt - \frac{dr}{f}, \quad m(v) = m \frac{1 + \tanh(v/v_{0})}{2}
$$

Time evolution of EWC

[Babaei-Mohammadi-Vahidinia (to appear)]

[Babaei-Mohammadi-Vahidinia (to appear)] Thank you for your attention!