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Outline

• (Holographic)Entanglement entropy

• Entanglement wedge

• holographic duals for entanglement wedge cross-section:
• Entanglement of purification

• Reflected entropy

• Logarithmic negativity

• Odd entropy
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Entropy: a measure of entanglement

• Dividing a quantum system into
A and B: H = HA ⊗HB.

• Density matrix of a pure state: ρ = |ψ⟩⟨ψ|

• Reduced density matrix: ρA = trB(ρ) =
min(dA,dB)∑

k=1
pk|ψk⟩⟨ψk|

• It is entangled iff ρA be mixed.

Entanglement entropy
A measure of entanglement in a given quantum state |ψ⟩.

SA = − tr(ρA ln ρA) =

{
0 ⇔ ρA is pure ⇔ seprable state

S > 0 ⇔ ρA is mixed ⇔ entangled state
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Example: Thermofield double state

|ψ⟩ = 1√
Z

∑
n

e−βEn/2 |nA⟩ ⊗ |nB⟩ , Z =
∑

n
e−βEn

The reduced density operator for subsystem A

ρA = trB(|ψ⟩⟨ψ|) =
1
Z
∑

n
e−βEn |nA⟩⟨nA|

=
1
Ze−βHA , HA |nA⟩ = En |nA⟩ .

• ρA is a Gibbs state at temperature β−1.

Entanglemet Entropy: SA = − trA [ρA(−βHA − lnZ)]

= β(⟨HA⟩ − F)︸ ︷︷ ︸
Thermal entropy for subsystem A

, F = − 1
β
lnZ.
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Remark
This example shows that you can always purify a thermal system by doubling Hilbert
space as H = HA ⊗HB.

Purification
You can always purify a mixed state by enlarging its Hilbert space.
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Aside: Eternal black hole and Thermofield double state (�I)

• black hole is dual to a thermal
state of the CFT and the
horizon area is the entropy of
CFT.

• By doubling Hilbert space one
can purify a thermal state as
well as thermal state of a CFT
dual to black hole.

• What is the gravity description
of this purification?

• The natural answer: a
maximally extended black hole
geometry with two disjoint
asymptotic region (dual to two
non-interacting CFTs)!
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Aside: Eternal black hole and Thermofield double state (II)

• black hole entropy is
entanglement entropy in this
case.

• Classical smooth connection ⇔
Quantum Entanglement
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Ryu-Takayanagi (RT) prescription [Ryu-Takayangi ’06]

SA = − tr(ρA ln ρA) = min
γA

Area(γA)

4G
Entanglement entropy in CFT Area of minimal surface

A minimal codimension-2 surface which satisfies:

i) ∂γA = ∂A ii) γA is homologous to A
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Subregion/subregion duality

Information of ρA is included in entanglement wedge MA.

[Czech-Karczmarek-Nogueira-Raamsdonk ’12][Wall ’12] [Headrick-Hubeny-Lawrence-Rangamani ’14]
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EW of A ∪ B
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Entanglement wedge cross-section of A ∪ B
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Entanglement wedge cross-section of A ∪ B
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What’s the dual of entanglement wedge cross-section?
Entanglement wedge and holography for mixed states?!

• Entanglement of purification? [Takayanagi-Umemoto’17] [Nguyen-Devakul-Halbasch- Zaletel-Swingle’17]

• Reflected entropy? [Dutta, Faulkner, ‘19]

• Logarithmic negativity? [Kudler-Flam,Ryu’18]

• Odd entropy? [Tamaoka’18]

• ...?!
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Correlation measures for mixed states

• SA is not a measure of correlation for mixed states!
No correlation for ρA

⊗
ρB, but SA > 0 for mixed ρA.

• Holographic correlation measures for mixed states?

e.g. mutual information,
entanglement of purification
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Purification

You can always purify a mixed state by enlarging its Hilbert space.

Purification is not unique !
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Entanglement of purification [Terhal- Horodecki- Leung- DiVincenzo, ’02]

Entanglement between AA′ and BB′:

SAA′ = − tr (ρAA′ ln ρAA′)

Entanglement of purification:
Ep ≡ min

all purification
SAA′

It measures both quantum and classical correlations between A and B.

It has an operational interpretation in terms of local operations and a small amount of
communication.
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Properties of entanglement of purification
• Ep is bounded above by SE

Ep(A : B) ≤ min (SA,SB)

• In a bipartite state that saturates the Araki-Lieb inequality SAB = |SA − SB| implies
Ep(A : B) = min (SA,SB)

• Ep is monotonic
Ep(A : BC) ≥ Ep(A : B)

• EP is bounded below by I/2

Ep(A : B) ≥ I(A : B)

2

• A bound for tripartite system

Ep(A : BC) ≥ I(A : B)

2 +
I(A : C)

2

• Polygamous for tripartite system
Ep(A : B) + Ep(A : C) ≥ Ep(A : BC)
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Entanglement of purification and EWC

The entanglement wedge as a new holographic geometry?
with the boundary ∂MAB = A ∪ B ∪ A′ ∪ B′

minimal cross-section
of the entanglement wedge = Entanglement of Purification

[Takayanagi-Umemoto’17] [Nguyen-Devakul-Halbasch- Zaletel-Swingle’17]
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Evidences for Ep = EW

• It satisfies all mentioned inequality.

• A heuristic derivation via MERA
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Reflected entropy [Dutta, Faulkner, ‘19]

For any mixed state there is a canonical purification by doubling the Hilbert space:

ρAB =
∑

i
pi |ψi⟩⟨ψi|

purification
−−−−−−−−→ √

ρAB =
∑

i

√pi |ψi⟩AB |ψi⟩A∗B∗

Example: thermofield double state

ρth =
1
Z
∑

n
e−βEn |nA⟩⟨nA|

purification
−−−−−−−−→ |ψ⟩ = 1√

Z

∑
n

e−βEn/2 |nA⟩ ⊗ |nB⟩

reflected entropy:
SR(A : B) ≡ SAA∗ = − tr (ρAA∗ ln ρAA∗)

ρAA∗ = trBB∗ (|√ρAB⟩ ⟨ρAB|)
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Reflected entropy and EWC [Dutta-Faulkner ‘19]
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Reflected entropy and EWC

[Dutta-Faulkner ‘19]
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Replica trick for reflected entropy

Twice replication by taking n × m copies:
• 1st replication:

|ψm⟩ = 1√
tr ρm

AB

∣∣∣ρm/2
AB

〉
, 2m ∈ Z+

• 2nd replication for Renyi entropy

S(n)(AA∗)ψm =
1

n − 1 ln tr
(
ρ
(m)
AA∗

)n

ρ
(m)
AA∗ = trBB∗ |ψm⟩⟨ψm| = 1

tr ρm
AB

trBB∗

∣∣∣ρm/2
AB

〉〈
ρ

m/2
AB

∣∣∣
Now one can obtain

Zn,m ≡ trAA⋆

(
trBB⋆

∣∣∣ρm/2
AB

〉〈
ρ

m/2
AB

∣∣∣)n
, (calculable via twist op’s)

where Z1,m = trρm
AB and

S(n)(AA⋆)ψm =
1

n − 1 ln
Zn,m

(Z1,m)n , −→ SR = lim
m,n→1

S(nm)
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Logarithmic negativity and EWC [Kudler-Flam,Ryu’18] [Kusuki, Kudler-Flam, Ryu’19]

Renyi entropy is related to area of cosmic brane in the bulk gravity theory [Dong ’16]

S̃(n) ≡ n2∂n

(
n − 1

n S(n)
)

=
area(cosmic brane)

4G , tension =
n − 1
4nG

A generalization: Renyi reflected entropy

S̃R
(n) ≡ n2∂n

(
n − 1

n S(n)
R

)
= 2area(cosmic brane)

4G

∣∣∣∣
EW

Renyi reflected entropy ∝ area of back reacted brane on EW
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Logarithmic negativity and EWC [Kudler-Flam,Ryu’18] [Kusuki, Kudler-Flam, Ryu’19]

Partial transposition: ⟨iA, jB|ρTB
AB|kA, lB⟩ ≡ ⟨iA, lB|ρAB|kA, jB⟩

Negative Eigenvalue of ρTB
AB =⇒ Entanglement

Logarithmic Negativity = log

(
tr

√
ρTB

AB ρ
TB
AB

†
)

= S(1/2)
R

For (vacuum) spherically symmetric regions [Hung-Myers-Smolkin-Yale ’11]

Renyi = χSE = χ
area(no brane)

4G

Logarithmic Negativity = χEW
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Odd entropy and EWC (without purification) [Tamaoka’18]

So(A : B) ≡ lim
no→1

1
1 − no

[
tr
(
ρTB

AB

)no
− 1

]
,

(nois analytic continuation of an odd integer)

SO(A : B) =
∑
λi<0

|λi| ln |λi|−
∑
λi>0

|λi| ln |λi|, λi : eigenvalues ofρTB
AB

• It reduces to the EE for pure states.
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Odd entropy and EWC

A new constraint for Holographic CFTs?!

EW(A : B) ≥ I(A : B)/2 =⇒ So(A : B)− S(A : B) ≥ I(A : B)/2
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Summary: EWC is dual to ...

• Entanglement of purification?[Takayanagi-Umemoto’17] [Nguyen-Devakul-Halbasch- Zaletel-Swingle’17]

• Reflected entropy?[Dutta-Faulkner ‘19]

• Logarithmic negativity? [Kudler-Flam,Ryu’18]

• Odd entropy? [Tamaoka’18]

• It seems that all of them are same in holographic CFTs.
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Further investigations

• bit threads description [Bao-Chatwin-Davies-Pollack-Remmen]

• entanglement wedge cross section can not be any axiomatic measures of the
quantum entanglement. [Umemoto ’19]

• dynamics of local quench via reflected entropy [Yuya-Tamaoka ’19]

• checking the SR = 2Ew duality at higher order terms in m − 1 for ρm
AB [Jeong- Kim-Nishida’19]

• generalization for multi-partite re-
gions [Bao-Cheng’18] [Bao-Halpern ’18] [Akers-Rath’19]

• reconstructing EW via information
metrics [Kusukia-Suzukib-Takayanagia-Umemotoa’19]

[borrowed from 1908.09939]

• EoP in free scalar QFTs [Bhattacharyyaa-Takayanagi-Umemoto ’18]
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Some projects

• Thermal corrections to EWC (with Lifshitz and hyperscaling violating exponents)
and EWCs for entangling region with singular boundaries [Babaei-Mohammadi-Vahidinia ’19]

• EWCs in Higher Curvature Theories [Babaei-Mohammadi-Vahidinia (to appear)]

• Global Thermal and Electromagnetic Quenches [Babaei-Mohammadi-Vahidinia (to appear)]

ds2 =
1
r2

[
−f(r, v)dv2 − 2dvdr + dx2

d−1

]
, f(r, v) = 1 − m(v)rd + Q2(v)r2(d−1)

dv = dt − dr
f , m(v) = m1 + tanh(v/v0)
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Time evolution of EWC

Initial config. mid time late time

[Babaei-Mohammadi-Vahidinia (to appear)]
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[Babaei-Mohammadi-Vahidinia (to appear)] Thank you for your attention!


