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Classical information 
 
 
Liouville's theorem 
The Liouville’s theorem describes the time evolution of the phase space. 
Consider an ensemble of many identical states with different initial conditions, then the 
density of states is constant along every trajectory in phase space. 
 

𝜌 = 𝜌 𝑝1, 𝑞1, ⋯ , 𝑝𝑁, 𝑞𝑁; 𝑡 ,        
𝑑𝜌

𝑑𝑡
= 0.  

 
• The Hamiltonian is  allowed to vary with time.  
• There are no restrictions regarding how strongly the degrees of freedom are coupled. 
 
 
 

Classical and Quantum Information 



For a region Γ in phase space with probability density ρ p, q , the volume of the phase 
space can be define through 

 VΓ → exp S  

S = −  dpdq ρ p, q log ρ p, q  

S is called the fine grained entropy.  

By Liouville's theorem, 
dρ

dt
= 0 and we find that S remains constant in time, 

dS

dt
= 0. 

 

For example if ρ p, q = 1/𝑉Γ inside the blue region and zero outside, then 𝑆 = log  [𝑉Γ] 



A fine-grained distribution 𝜌 can be coarse-grained by performing a local average over each 
cell (or partition) in phase space.  
 
 
 
 
 
 
 
Coarse grained entropy  𝑆  is defined as  

𝑆 = −  dp dq 𝜌 p, q log 𝜌 p, q  

where 𝜌  is the average density. In fact 
 
This is the origin of the second law of thermodynamics. 
 
The macroscopic properties of a fine grained distribution 𝜌 are completely encoded in its 
coarse grained version 𝜌 .  
 
Using the Jensen inequality                           𝑆 ≤ 𝑆  
 
Conclusion:  
The fine grained information is conserved but the coarse grained information is not. 
 

 𝑆 0 < 𝑆 (𝑡) 



Quantum information 
 
Similarly for Quantum Mechanics the fine grained or von Neumann entropy is 

𝑆𝑣𝑁 = −𝑇𝑟[𝜌 log 𝜌] 
where 𝜌 is density matrix of states. 
 
For example for a mixed state 

𝜌𝑀 =  𝑝𝑖  |𝜓𝑖  𝜓𝑖|

𝑁

𝑖=1

,          𝑝𝑖 = 1

𝑁

𝑖=1

 

𝑆𝑣𝑁 = −  𝑝𝑖 log 𝑝𝑖

𝑁

𝑖=1

 

• A pure state yields zero entropy since 
 

𝑝1 = 1 &    𝑝𝑖 = 0, 𝑖 ≠ 1   →      𝑆 = 0 
 

there is no ignorance in knowing the state of the system.  
 
• In contrast to a pure state, for a maximally mixed state 
 

𝑝𝑖 =
1

𝑁
     →      𝑆 = log𝑁  



Reduced density matrix 
 
Consider a quantum system with only two different degrees of freedom.  Its state 
vector, using the Schmidt decomposition can be written as 

𝜓 =  𝑎𝑖𝑗 𝜒𝑖
𝐼  |𝜒𝑖

𝐼𝐼〉

𝑁

𝑖,𝑗=1

=  𝑐𝑖  𝜓𝑖
𝐼  |𝜓𝑖

𝐼𝐼〉

𝑁

𝑖=1

 

the pure density matrix for the system is given by 

𝜌 = 𝜓 〈𝜓| =  𝑐𝑖  𝑐𝑗
∗

𝑁

𝑖,𝑗=1

 𝜓𝑖
𝐼 𝜓𝑖

𝐼   𝜓𝑖
𝐼𝐼 𝜓𝑖

𝐼𝐼  

 
 

 
 
 
• Performing a partial trace erases information about the degree of freedom, and 

hence, the density matrix of a mixed state contains less information than a pure 
state. 

• The density matrix for a mixed state is a precise measure of how much 
information is lost in performing an observation on a quantum system. 

 

The reduced density matrix is defined by 
 

𝜌𝑅
𝐼 = 𝑇𝑟𝐼𝐼 𝜌 =  𝑐𝑖

2

𝑁

𝑖=1

𝜓𝑖
𝐼 𝜓𝑖

𝐼  



 
Properties 
 
1. 𝑇𝑟 𝜌𝑅 = 1. 
 
2. 𝜌𝑅 = 𝜌𝑅

†      (positive semidefinite, i.e. all eigen-values ≥ 0) . 
 
3. If  𝑇𝑟[𝜌𝐼⊕𝐼𝐼]=0   (the whole system in pure state) then  
 

non-zero eigen-values of I = non-zero eigen-values of II. 
  

Therefore if 𝑆𝐼⊕𝐼𝐼 = 0 then 𝑆 𝜌𝑅
𝐼 = 𝑆 𝜌𝑅

𝐼𝐼 . 
 



Entangled Quantum States 
 
If the joint state vectors cannot be factorized, which are called entangled states, the two  
degrees of freedom become inseparable, and one cannot consider either of the degrees  
of freedom independently of the other.  
For instance in the previous example  
 
 
 

𝑇𝑟 𝜌𝑅
𝐼 =  𝑐𝑖

2 = 1

𝑁

𝑖=1

,                   𝑇𝑟 𝜌𝑅
𝐼 2

=  𝑐𝑖
4 < 1

𝑁

𝑖=1

 

 
The last inequality leads to the conclusion that in any set of basis 
 

𝜓 =  𝑐𝑖  𝜓𝑖
𝐼  |𝜓𝑖

𝐼𝐼〉

𝑁

𝑖=1

≠ |𝜒𝐼〉|𝜒𝐼𝐼〉 

 
The Entanglement Entropy is  

𝑆𝐸𝐸 = −𝑇𝑟[𝜌𝑅 log 𝜌𝑅] 
 

𝜌𝑅
𝐼 = 𝑇𝑟𝐼𝐼 𝜌 =  𝑐𝑖

2

𝑁

𝑖=1

𝜓𝑖
𝐼 𝜓𝑖

𝐼  



Fine grained and coarse grain entropy in quantum systems 
 
Consider a pure system Σ with total energy 𝐸 which is a union of 
weakly interacting  thermal similar subsystems 𝜎𝑖 

Σ =  𝜎𝑖

𝑁

𝑖=1

 

The density matrix of each subsystem is given by (a general 
property of most complex interacting systems) 
 

𝜌𝑖 = 𝑒𝛽𝐻𝑖/𝑍𝑖 
 
where 𝐻𝑖  is the energy of each subsystem, (The thermal density 
matrix maximizes the entropy for a given average energy).  
Then the coarse grained (thermal) entropy can be defined as 
 

𝑆𝑇ℎ𝑒𝑟𝑎𝑚𝑙 =  𝑆𝑖

𝑁

𝑖=1

= −  𝜌𝑖 log 𝜌𝑖

𝑁

𝑖=1

 

 
The fine grained entropy is (Σ is pure)  
 

𝑆𝐹.𝐺. = 0 
 
 

𝜎𝑖 

Σ 



The coarse grained entropy is what we usually think of in the context of 
thermodynamics. It is not conserved: 
 
For example suppose we start with the subsystems in a product state with no 
correlations 

𝜓Σ =  𝜓𝜎𝑖

𝑁

𝑖=1

 

Therefore 

𝑆𝑖 = 0     →      𝑆𝑇ℎ𝑒𝑟𝑎𝑚𝑙 =  𝑆𝑖

𝑁

𝑖=1

= 0 

 
and fine grained entropy (𝜓Σ is pure) 

𝑆Σ = 0, 
 
Now subsystems interact and 𝜓Σ is not factorizable, therefore 
 

𝑆𝑖 ≠ 0    →    𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙≠ 0 
 
But 𝑆Σ = 0 because the fine grained entropy is conserved.  
 

In other words by a unitary time evolution  𝜓Σ
𝑝𝑢𝑟𝑒

𝑡 = 𝑈 𝑡, 𝑡0 𝜓Σ
𝑝𝑢𝑟𝑒

𝑡0 . 
 



Now consider Σ1 ∈  Σ 
 
Denote the fine grained entropy of Σ1 with 
the remaining subsystem Σ − Σ1 as 𝑆 Σ1 . 
This can be computed from the entanglement 
entropy of the reduced density matrix 𝜌𝑅[Σ1]. 

𝑆𝐸𝐸 Σ1 = 𝑆𝐹.𝐺.[Σ1] ≡ 𝑆 Σ1 = −𝑇𝑟[𝜌𝑅 Σ1 log 𝜌𝑅[Σ1]] 
 
Always we have 

𝑆 Σ1 ≤ 𝑆𝑡ℎ𝑒𝑟𝑚𝑎𝑙 Σ1  
For example  
If                         Σ1 = Σ → 𝑆 Σ = 0 ≤ 𝑆𝑡ℎ𝑒𝑟𝑚𝑎𝑙 Σ1  

or if                    Σ1 ≪ Σ → 𝑆 Σ1 = 𝑆 Σ − Σ1 ≈ 𝑆[Σ] = 0 ≤ 𝑆𝑡ℎ𝑒𝑟𝑚𝑎𝑙 Σ1  

Σ1 

Definition of Information:  Information is the difference between coarse grained and 
fine grained entropy 

   𝐼 = 𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙 − 𝑆𝐹.𝐺. 
Two extremes 
1) For a small subsystem (𝜌 = 𝜌)  𝑆𝐹.𝐺. ≈ 𝑆𝐶.𝐺 = 𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙 →   𝐼 ≈ 0. 
2) For pure system Σ ∶   𝑆𝐹.𝐺. = 0 →   𝐼 = 𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙.  
This information is hidden in correlation between subsystems which make Σ pure.  



• How much information are in a moderately sized subsystem? 
 
• Don Page: For subsystems smaller than about the half of the total system, 𝐼 ≈ 0. 

Results: 

If Σ1 <
1

2
 Σ   then  𝐼 Σ1 ≈ 0    →      𝑆[Σ1] ≅ 𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙[Σ1] 

 
Σ is pure so                             𝑆 Σ − Σ1 = S[Σ1] 
 

If Σ1 >
1

2
Σ  →  Σ − Σ1 <

1

2
Σ    

 𝑆[Σ − Σ1] ≅ 𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙 Σ − Σ1 → 𝑆[Σ1] ≅ 𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙[Σ − Σ1] 
 

𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙 Σ − Σ1 ≅ 1 − 𝑓 𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙[Σ] 
 

𝑓 =
#𝑑. 𝑜. 𝑓 Σ1

#𝑑. 𝑜. 𝑓 Σ 
 

 
𝐼 Σ1 = SThermal Σ1 − S Σ1 = 2f − 1  SThermal[Σ] 

 
 
 

Theorems on quantum information of subsystems 



1

2
 

𝑓 

S[Σ1] 

𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙[Σ1] 

𝐼[Σ1] 

Pure state 

Pure state 

Page Curve 

𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙 Σ1 ≅ 𝑓 𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙[Σ] 
 

𝑓 =
#𝑑. 𝑜. 𝑓 Σ1

#𝑑. 𝑜. 𝑓 Σ 
 

 
 
 
 
 
 
 
 
 
 
 

𝐼 Σ1 = SThermal Σ1 − S Σ1 = 2f − 1  SThermal Σ  
 
                                           𝑓 ≥ 1/2 



• In a large quantum system most pure states looks almost identical to the maximally 
mixed state when probed by an observable. 
 
Consider a finite dimensional Hilbert space with     dim 𝐻 = 𝑁 ≫ 1 . 
𝑖 = orthonormal basis of 𝐻                      𝑖 = 1,2, … , 𝑁. 
𝐴 = A linear observable acting on 𝐻. 
 
The most general pure state in 𝐻 is denoted by 

𝜓 =  𝑐𝑖  𝑖 ,                𝑐𝑖
2 = 1,

𝑁

𝑖=1

𝑁

𝑖=1

 

So the set of pure states lives on a 2𝑁 − 1 dimensional unit sphere. 
                                                                                                  𝜎 
Consider each pure state is equally likely  
(microcanonical or Haar measure).  
The probability to select states inside 𝜎~ 𝑉𝜎  
 
Haar measure:  

𝑑𝜇 = 𝑎 𝑑𝑐1𝑑𝑐1
∗  … 𝑑𝑐𝑁𝑑𝑐𝑁

∗  𝛿( 𝑐𝑖
2 = 1)

𝑁

𝑖=1

 ,  𝑤𝑖𝑡ℎ          𝑑𝜇 = 1 



The average of 〈𝐴〉 over all pure state is 

〈𝜓 𝐴 𝜓〉 =  𝑑𝜇〈𝜓 𝐴 𝜓〉 =  𝐴𝑖𝑗

𝑖,𝑗

 𝑑𝜇 𝑐𝑖  𝑐𝑗
∗ =

1

𝑁
 𝐴𝑖𝑖 = 𝑇𝑟[𝜌𝑚𝐴] 

where 

𝜌𝑚 =
1

𝑁
= micro-canonical, maximally mixed state density matrix. 

 
The standard deviation is 

𝜓 𝐴 𝜓 − 𝑇𝑟 𝜌𝑚𝐴 2 =
1

𝑁 + 1
(𝑇𝑟 𝜌𝑚𝐴2 − 𝑇𝑟 𝜌𝑚𝐴 2) 

At large 𝑁 ≫ 1 the right hand side tends to zero, so 

𝜓 𝐴 𝜓 = 𝑇𝑟 𝜌𝑚𝐴 + 𝒪(
1

𝑁
) 

So most pure states are identical to each other and also close to maximally mixed state. 
 



For example consider a quantum system with a bipartite Hilbert space 𝐻 = 𝐻𝐴⨂𝐻𝐵 
where the subsystems 𝐴 and 𝐵 have dimension 𝑑𝐴 = dim 𝐻𝐴, 𝑑𝐵 = dim 𝐻𝐵, with 𝐴 the 
smaller of the two subsystems, 1 < 𝑑𝐴 ≤ 𝑑𝐵. Given a pure state 𝜓 ∈ 𝐻, the subsystems 
𝐴 and 𝐵 have the same entanglement entropy 𝑆𝐴 = 𝑆𝐵. For 𝑑𝐵 ≫ 1 
 

𝑆𝐴 = −〈𝑇𝑟(𝜌𝐴 log 𝜌𝐴)〉 = − lim
𝑟→1

𝜕𝑟〈𝑇𝑟𝜌𝐴
𝑟〉 ≈ log 𝑑𝐴 −

1

𝑑𝐴𝑑𝐵

𝑑𝐴
2 − 1

2
 

Δ𝑆𝐴
2 = 𝑆𝐴

2 − 𝑆𝐴
2 ≈

1

𝑑𝐴𝑑𝐵

𝑑𝐴
2 − 1

2
 

 〈𝑆𝐴〉 

𝑑𝐴

𝑑𝐵
 

½  1 

If 𝑑𝐴 <
1

2
𝑑𝐵 then 𝜌𝐴 is exponentially close to maximally mixed state and its entanglement 

Entropy is 𝑆𝐴 = log𝑑𝐴. If 𝑑𝐴 >
1

2
𝑑𝐵 then 𝐵 will be the small subsystem.  



 
Flat space-time: Minkowski vs Rindler coordinates 

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑥2 = 𝑒2𝑎𝜉(−𝑑𝜂2 + 𝑑𝜉2) 
 
Rindler coordinates describe a uniformly  
accelerating  observer. 
 
The Rindler horizon is the boundary of the Rindler  
coordinates. The Rindler observer can’t receive  
any signal from 𝑡 ≥ 𝑥 or send signal to 𝑡 ≤ −𝑥.  
So the Rindler space is divided into two distinct  
Right and Left wedges. 
 
 
ℳ : Time translation symmetry; 𝑖𝜕𝑡 → 𝐻 
𝐻 = Minkowski Hamiltonian. 
 
ℜ : Rindler time translation symmetry; 𝑖𝜕𝜂 → 𝐾 

𝐾 = Boost (Rindler Hamiltonian) 
 

Accelerating observer in flat space 



Consider a scalar field theory on a two dimensional Minkowski space-time 

𝑆 =  𝑑2𝑥 −𝑔 𝛻𝜙 2 

Positive energy solutions 
 
ℳ:              𝑓𝑘 ∼ 𝑒𝑖𝑘𝑥−𝑖𝜔𝑡 ,   𝑘 = 𝜔 
 

ℜ:     𝑔𝑞
𝐿/𝑅

∼ 𝑒𝑖𝑞𝜉±𝑖𝜈𝜂 Θ ∓𝑥  , 𝑞 = 𝜈 

 
Quantization 

𝜙ℳ =  𝑎𝑘 𝑓𝑘 + 𝑎𝑘
† 𝑓𝑘

∗

𝑘

 

𝜙ℜ =  𝑏 𝑞𝑔𝑞
𝐿 + 𝑏 𝑞

†𝑔𝑞
𝐿∗

+ 𝑏𝑞𝑔𝑞
𝑅 + 𝑏𝑞

†𝑔𝑞
𝑅∗

𝑞

 

A basis change between 𝑎 and 𝑏, 𝑏  

𝑏𝑞 = 𝛼𝑞𝑘 𝑎𝑘 + 𝛽𝑞𝑘 𝑎𝑘
†          Bogoliubov coefficients 

QFT on Rindler space 



States: 
𝐻𝑄𝐹𝑇 = 𝐻ℳ = 𝐻𝐿 ⨂ 𝐻𝑅 

 
𝑁 ℳ ∈ 𝐻ℳ,  𝑛𝐿 𝑚𝑅 ∈ 𝐻𝐿 ⨂ 𝐻𝑅 

 
Minkowski vacuum state: 

0 ℳ:       𝑎𝑘 0 ℳ = 0 
 

𝑏𝑞 0 ℳ = 𝛽𝑞𝑘𝑎𝑘
† 0 ℳ ≠ 0 

 
The notion of vacuum is not invariant with respect to which observer we consider. 
 
What does 0 ℳ look like in terms of Rindler states? 
 

There is a basis of 𝑎𝑘 that                   𝑎𝑘 ∼ 𝑏𝑘 − 𝑒−
𝑖𝜋

𝑎
𝜈 𝑏 −𝑘 

 
where 

0 ℳ =   𝑒−
𝜋
𝑎𝑛𝜈 𝑛−𝑘 𝐿 𝑛𝑘 𝑅

𝑛𝑘

 

(Thermofield double state) 
 

It’s an entangled state between modes on the left and modes on the right of Rindler space. 



The reduced density matrix is 

𝜌𝑅 ∼ 𝑒−
2𝜋
𝑎

𝐾 
So an observer who is constantly accelerating in Minkowski space, experiences a 

thermal bath at 𝑇 =
𝑎

2𝜋
 (Unruh radiation). The proper temperature is given in terms 

of the proper acceleration 𝑇𝑜𝑏𝑠 =
𝛼

2𝜋
=

𝑎𝑒−𝑎𝜉

2𝜋
. 

 
 
Entanglement 
 
Consider two following density states 
 
𝜌𝑀

0 = 0 𝑀 0  ,      𝐸𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 
𝜌𝑀 = 𝜌𝐿⨂𝜌𝑅,       Unentangled 
 
By point splitting 
 

𝑇𝑡𝑡 = lim
𝑡′→𝑡
𝑥′→𝑥

𝜕𝑡𝜙 𝑡, 𝑥 𝜕𝑡′𝜙 𝑡′, 𝑥′ − 〈𝑀 0| 𝜕𝑡𝜙 𝑡, 𝑥 𝜕𝑡′𝜙 𝑡′, 𝑥′ 0 𝑀 

At origin 
𝑇𝑡𝑡 = 𝑇𝑟 𝜌𝑀

0 𝑇𝑡𝑡(0) = 0,       𝑇𝑡𝑡 = 𝑇𝑟 𝜌𝑀 𝑇𝑡𝑡(0) → ∞. 

(0,x) (0,x’) 



Schwarzschild black hole 

𝑑𝑠2 = − 1 −
2𝐺𝑀

𝑟
𝑑𝑡2 + 1 −

2𝐺𝑀

𝑟

−1

𝑑𝑟2 + 𝑟2 𝑑Ω2 

 
Eternal black hole 
 
 

Black holes 



Near horizon 
(Rindler space) 

𝜌 =  𝑔𝑟𝑟𝑑𝑟
𝑟

𝑟=2𝑀𝐺

 , 𝑥 = 2𝑀𝐺 𝜃 cos 𝜙 , 𝑦 = 2𝑀𝐺 𝜃 sin 𝜙 , 𝜔 =
𝑡

4𝑀𝐺
 

 
Near horizon is similar to Rindler space  

𝑑𝑠2 = −𝜌2 𝑑𝜔2 + 𝑑𝜌2 + 𝑑𝑥2 + dy2 
 
Moreover 
𝑇 = 𝜌 sinh 𝜔 , 𝑧 = 𝜌 cosh 𝜔  →  𝑑𝑠2 = −𝑑𝑇2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 
 
A large black hole is locally almost indistinguishable from flat space-time. 



• The same entanglement exist between modes  
on the left and right Rindler wedges. 
• The vacuum is similar to 0 ℳ = 0 𝐻𝐻 (Hartle- 
Hawking vacuum state). 
• Black hole is in thermal equilibrium with  
radiation coming from infinity at temperature 

𝑇𝐻 =
ℏ𝑐3

8𝜋𝑘𝐵

1

𝐺𝑀
 

• Thermodynamics  
 

𝑑𝐸 = 𝑇𝐻𝑑𝑆 → 𝑑𝑆 = 8𝜋𝐺𝑀 𝑑𝑀 → 𝑆 = 4𝜋𝐺𝑀2 
𝐴𝐻 = 4𝜋𝑟𝐻

2 = 4𝜋 2𝐺𝑀 2 = 16𝜋𝐺2𝑀2 

→ 𝑆𝐵𝐻 =
𝐴𝐻

4𝐺
 



The ground state is given by 

Ψ 𝜒𝐿, 𝜒𝑅 =
1

𝑍
 𝑑𝜒 𝑥 𝑒−𝐼𝐸

 

𝑇>0

 

By going to Rindler coordinates 
𝐼𝐸 → 𝐻ℜ = 𝐾 

boost (generator of 𝜔 translation) 

𝐻ℜ =  𝑑𝜌 𝑑𝑥 𝑑𝑦 𝜌 𝑇𝜔𝜔
∞

𝜌=0

 

For example 

𝑇𝜔𝜔 =
Π2

2
+

1

2
𝛻𝜒 2 + 𝑉(𝜒)  

So the ground state in Rindler 
coordinate is written as 

Ψ 𝜒𝐿, 𝜒𝑅 =
1

𝑍
〈𝜒𝐿 𝑒−𝜋𝐾 𝜒𝑅〉 

The ground state is a transition matrix 
element between initial state |𝜒𝑅〉 and  
final state |𝜒𝐿〉. 



𝜌𝑅(𝜒𝑅 , 𝜒𝑅
′ ) =  Ψ∗ 𝜒𝐿, 𝜒𝑅 Ψ(𝜒𝐿 , 𝜒𝑅

′ ) 𝑑𝜒𝐿  =
1

𝑍
 𝜒𝑅 𝑒−𝜋𝐾 𝜒𝐿  𝜒𝐿 𝑒−𝜋𝐾 𝜒𝑅

′  𝑑𝜒𝐿

=
1

𝑍
〈𝜒𝑅 𝑒−2𝜋𝐾 𝜒𝑅

′ 〉 

 
 So the observer on the right Rindler wedge see the vacuum as a thermal ensemble  
with density matrix given by 

𝜌𝑅 =
1

𝑍
𝑒−2𝜋𝐾 

The temperature of the ensemble is 𝑇𝑅 =
1

2𝜋
 and the proper temperature is 𝑇 𝜌 =

1

2𝜋𝜌
. 



Collapsing black hole 

Penrose diagram of collapsing BH = Minkowski + Schwarzschild 



Quantum properties of the scalar fields in the curved background of black holes 
 
Tortoise coordinates 

𝑟∗ = 𝑟 + 2𝑀𝐺 log(
𝑟

2𝑀𝐺
− 1) 

 

𝑑𝑠2 = 1 −
2𝑀𝐺

𝑟
−𝑑𝑡2 + 𝑑𝑟∗2 + 𝑟2𝑑Ω2 

 
This coordinate covers only 𝑟 > 2𝑀𝐺 and horizon is located at 𝑟∗ → −∞.  
 
Starting from massless scalar field 

𝐼 =  𝑑4𝑥 −𝑔
1

2
𝛻𝜒 2 

and by defining 𝜓 = 𝑟𝜒 

𝐼𝑙𝑚 =
1

2
 𝑑𝑡 𝑑𝑟∗ [−

𝜕𝜓𝑙𝑚

𝜕𝑡

2

+
𝜕𝜓𝑙𝑚

𝜕𝑟∗

2

+ V𝑙 r∗ 𝜓𝑙𝑚
2 ]   

For a mode of frequency 𝜈, the equation of motion is a Schrodinger equation with energy 
𝜈2and potential as 

V𝑙 r∗ = 1 −
2MG

r

l l + 1

r2 +
2GM

r3  





𝑎, 𝑎† 

𝑏, 𝑏† 

𝑐, 𝑐† 

Quantization in curved space-time 
 
 Let’s suppose that there is no back-reaction of quantum fields  
on classical metric. 
 
Consider a massless Klein-Gordon field 

□𝜙 = 0 
On Cauchy slice  𝐼− 

𝜙 𝑥 =  𝑓𝑖

𝑖

𝑎𝑖 + 𝑓 
𝑖  𝑎𝑖

†  

𝑎𝜔𝑙𝑚  , 𝑎
𝜔′𝑙′𝑚′
† = 𝛿 𝜔′ − 𝜔 𝛿𝑙𝑙′𝛿𝑚𝑚′ 

 
On Cauchy slices  𝐼+ ∪ 𝐻 

𝜙 𝑥 =  𝑔𝑖

𝑖

𝑏𝑖 + 𝑔 𝑖  𝑏𝑖
† + ℎ𝑖𝑐𝑖 + ℎ 𝑖  𝑐𝑖

† 

where {𝑓𝑖 , 𝑓 
𝑖} are complete basis on 𝐼− and {𝑔𝑖 , 𝑔 𝑖 , ℎ𝑖 , ℎ 𝑖} are 

complete basis on  𝐼+ ∪ 𝐻. 
 

𝑏𝑖 , 𝑏𝑗
† = 𝑐𝑖 , 𝑐𝑗

† = 𝛿𝑖𝑗 ,      𝑏𝑖 , 𝑐𝑗 = 0. 

𝐼− 

𝐼+ 𝐻 



Transformation between two basis 

𝑏𝑖 =  𝛼𝑖𝑗 𝑎𝑗 + 𝛽𝑖𝑗𝑎𝑗
†

𝑗

 

if  𝑎𝑖 0 𝐼− = 0 then 0 𝑏†𝑏 0 𝐼− =  𝛽𝑖𝑗
2

≠ 0𝐼− . 

 
• This means that if we start from a vacuum state in the far past, we will get a flux of 

particles in the far future.  
• This is because that the collapsing black hole has a time dependent geometry, so the 

expansion in the early times is different from expansion at late times. 
 
 
What is the outgoing particle distribution? 
 
To find 𝛽𝑖𝑗 we need to solve the wave equation of motion in 𝐼+ and 𝐼− and relate them. 



Hawking approach to estimate the results 

Tortoise coordinates: 

𝑟∗ = 𝑟 + 2𝑀𝐺 log(
𝑟

2𝑀𝐺
− 1) 

𝑣 = 𝑡 + 𝑟∗ , 𝑢 = 𝑡 − 𝑟∗, 

𝑑𝑠2 = − 1 −
2𝐺𝑀

𝑟
𝑑𝑢 𝑑𝑣 + 𝑟2𝑑Ω2 

𝑢 

𝑣 

𝑣0 

Infalling light rays: 𝑣 = 𝑐𝑜𝑛𝑠𝑡. 
Outgoing light rays: 𝑢 = 𝑐𝑜𝑛𝑠𝑡. 
 
𝑣0 is a special light ray in the far past that gets reflected 
at 𝑟 = 0 and becomes the horizon. 
 
any light ray with 𝑣 < 𝑣0 is going to reach 𝑟 = 0 before 
the horizon is formed and fly out to infinity. 
 
any light ray with 𝑣 > 𝑣0 is going to reach 𝑟 = 0 after 
the horizon is formed and will fall into the singularity. 
 
 All very late light rays on 𝐼+ are coming from small region very close to 𝑣 = 𝑣0. Small region 

near 𝑣0 is magnified by black hole into infinite region in 𝑢 parameter. 



𝑢 

𝑣 

𝑣0 
𝜔1 

𝜔2 

For eternal black hole 𝜔1 = 𝜔2. 
For collapsing black hole there is a net red shift 𝜔1 > 𝜔2. 
 

UV modes on 𝐼− 
𝑚𝑎𝑝𝑝𝑒𝑑

 IR modes on 𝐼+ 
 
So we can use the geometric optics approximation 
without having to solve the wave equations. 
 
Then the only thing we need to know is the relationship 
between the null geodesics. At late time or large 𝑢 
 

𝑢 ≈ −4𝐺𝑀 log 𝑣0 − 𝑣 + 𝑐𝑜𝑛𝑠𝑡. 
 
so we can estimate the Bogoliubov coefficients, 𝛼 and 𝛽.  



𝑏𝜔
† 𝑏𝜔′ = 𝛿 𝜔 − 𝜔′

𝑃(𝜔, 𝑙)

𝑒𝛽𝜔 − 1
 

𝑃 𝜔, 𝑙 = gray body factor  (probability of particles to absorb by black hole). 
The outgoing particle distribution describes by a thermal radiation of temperature 
 

𝑇 =
1

𝛽
=

1

8𝜋𝐺𝑀
 

So the outgoing modes are thermally populated. 
 
Moreover the modes are uncorrelated, i.e. the higher point functions factorize  

𝑏 … 𝑏

2𝑁

=  〈𝑏𝑏〉

𝑁

𝑘=1

 

 

𝑏𝜔
† 𝑏𝜔′

𝑘
=

1

𝑍
 𝑇𝑟[𝑒−𝛽𝜔𝑏†𝑏 𝑏†𝑏 

𝑘
] 

 

𝑍 = 𝑇𝑟[𝑒−𝛽𝜔𝑏†𝑏 ] =
1

𝑒𝛽𝜔 − 1
 

 
 



Black hole evaporation 
 
By radiation black hole gets smaller and eventually 
disappears. The luminosity is given by 
 

𝐿 =
𝑑𝑀

𝑑𝑡
=   

𝑑𝜔

2𝜋

𝜔 𝑃(𝜔, 𝑙)

𝑒𝛽𝜔 − 1

∞

0𝑙

 

 
for 𝑙 → 0:    𝑃 𝜔, 𝑙 = 4𝐺2𝑀2𝜔 
 

𝑑𝑀

𝑑𝑡
= −

1

𝑇𝐻
2 = −

1

𝐺2𝑀2 → 𝑀 𝑡 = 𝑀0 1 −
3𝑡

𝐺2𝑀0
3

1/3

 

 
therefore the evaporation time is 
 

𝑡𝑒𝑣𝑎𝑝 ∼ 𝐺2𝑀0
3 

 
• This approximation is valid until the mass of black 

hole is of size of the Planck mass. 



The Hawking process creates entangled 
pairs, one trapped behind the horizon 
and the other escaping to infinity where 
it is observed as (approximate) blackbody 
radiation. 



Information paradox 
 
Hawking computation seems to contradict unitarity in 
quantum mechanics. 
 

𝜌𝐼−
= 𝑠ℎ𝑒𝑙𝑙 𝑠ℎ𝑒𝑙𝑙  𝑝𝑢𝑟𝑒 → 𝜌𝐼+

= 𝜌𝑇ℎ𝑒𝑟𝑚𝑎𝑙 (𝑚𝑖𝑥𝑒𝑑). 
 
but in quantum mechanics 
 

𝜌𝐼+
= 𝑈 𝜌𝐼−

𝑈† ,      𝑈 = 𝑒−𝑖𝐻𝑇  
𝑇→∞

 

therefore  
 

𝑆𝑣𝑁[𝜌𝐼+
]

≠0

= 𝑆𝑣𝑁[𝜌𝐼−
]

=0

 

    
In other words the radiation only depends on mass of the 
black hole, so we can make a black hole with a specific mass 
in different ways and we always get the same final state. By 
reversing the process we cannot find  what was constructed 
the black hole. 

𝐼− 

𝐼+ 



Entropy of Hawking radiation 
 
The von Neumann entropy from the reduced density 
matrix of the first 𝑁 hawking particles is 
 

𝑆𝑁 = −𝑇𝑟[𝜌𝑁 log 𝜌𝑁] 
 

𝑁 = 1:         𝑆1 = −𝑇𝑟[𝜌1 log 𝜌1] ≠ 0. 
 
For 𝑁 = 2 because two particles are uncorrelated 
 

𝜌2 = 𝜌1 ⊗ 𝜌1  →   𝑆2 = 2𝑆1 
 
Therefore for 𝑁 particles 
 

𝜌𝑁 = 𝜌1
𝑁  →   𝑆𝑁 = 𝑁𝑆1 

 
So the entanglement entropy of Hawking radiation increases linearly. 

𝐼− 

𝐼+ 

The first 𝑁 Hawking particles 



𝑆𝑁 

𝑁 

Hawking prediction 

Unitary evaporation 

pure state pure state 

For a unitary evaluation at the late time (after the black hole completely evaporated) 
the entanglement entropy of radiation has to go to zero. Because we start from a pure 
state then the Hawking radiation after the evaporation of black hole must be a pure state, 
i.e. 𝑆𝐸𝐸 = 0. 



Page curve 

𝑆𝐻𝑎𝑤𝑘𝑖𝑛𝑔 𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙(𝐵𝐻) 

𝑡𝑒𝑣𝑎𝑝 𝑡𝑝𝑎𝑔𝑒 

𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐵𝐻 ≠ 0 , 𝑆 𝐵𝐻 = 0 ,  
𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑅 = 0 , 𝑆 𝑅 = 0 

𝐼 𝐵𝐻 = 𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙(𝐵𝐻) 
Information is stored in microstates of the 

black hole 

𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐵𝐻 ≠ 0 , 𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑅 ≠ 0 
𝑆 𝐵𝐻 = 𝑆 𝑅 ≠ 0 

Radiation is entangled with the black hole 

𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐵𝐻 = 𝑆 𝐵𝐻 = 0 
𝑆 𝑅 = 0 → final pure state, 𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑅 ≠ 0 

𝐼 𝑅 = 𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙(𝑅) 
  Information is stored in correlation functions  

of the Hawking radiation  

𝑆(𝑅) 

BH BH 



Resolving Hawking's paradox 
What we learn from Hawking calculations: 
• The probability distribution for the number of particles emitted at a particular frequency  
      and angular momentum coincided with a thermal distribution, so the final state is mixed  
      (contradiction with unitary evolution of a quantum system)   
• Moreover, particles emitted at one frequency were uncorrelated with those emitted  
      at another frequency.  
 

𝑆𝐸𝐸  𝑆𝐵𝐻 = AH/4G 

• The root of entanglement entropy of Hawking radiation is the entanglement between 
black hole as quantum mechanical system and radiation.  

• For black hole the size of Hilbert space is determined by area of horizon. As black hole  
evaporates the size of Hilbert space decreases (area decreases).  
• The entanglement entropy of a system is bounded from above by logarithm of 

dimensionality of a system 𝑆𝐸𝐸 < 𝑆𝐵𝐻. 
 

The size of Hilbert space of the 
black hole is smaller than the  
entanglement entropy that one 
needs to purify the radiation of 
the black hole. 



As we stated before, in a random state the density matrix of the smaller subsystem 
is always maximally mixed. Now consider a random state 
 

𝜓 𝐵𝐻 𝑡 ,𝑅 𝑡 = 𝑈𝑟𝑎𝑛𝑑𝑜𝑚|𝜓0〉 

 
and construct the reduced density matrix 𝜌𝑅 𝑡 (𝑈) then 

 

𝑆𝐸𝐸 𝜌𝑅 𝑡 𝑈 =

log𝑑𝑅(𝑡) −
𝑑𝑅(𝑡)

2𝑑𝐵𝐻(𝑡)
+ ⋯           𝑑𝑅(𝑡) < 𝑑𝐵𝐻(𝑡)

log 𝑑𝐵𝐻(𝑡) −
𝑑𝐵𝐻(𝑡)

2𝑑𝑅(𝑡)
+ ⋯           𝑑𝐵𝐻(𝑡) < 𝑑𝑅(𝑡)

 

 

𝑆𝐻𝑎𝑤𝑘𝑖𝑛𝑔 𝑆𝑇ℎ𝑒𝑟𝑚𝑎𝑙(𝐵𝐻) 

𝑡𝑒𝑣𝑎𝑝 𝑡𝑝𝑎𝑔𝑒 

𝑆𝐸𝐸  

𝜌𝑅 𝑡 ≅ 𝐼𝑅 𝑡 /𝑑𝑅 𝑡  𝜌𝐵𝐻 𝑡 ≅ 𝐼𝐵𝐻 𝑡 /𝑑𝐵𝐻 𝑡  



Therefore we arrive at the following conclusion.  
 
Hawking was not justified in concluding from thermal distribution that, his results could 
only be consistent with a mixed state, since mixed and pure states are exponentially close.   
 
The thermal distribution is a leading-order result derived in free field theory. More 
accurately we should have 
 

𝑏†𝑏 =
1

𝑒𝛽𝜔 − 1
+ 𝑂

1

𝑆
+ 𝑂 𝑒−

𝑆
2  

 

𝑂
1

𝑆
= leading order corrections to the Hawking’s calculations 

 

𝑂 𝑒−
𝑆

2 = Non-perturbative effects (𝑆 ∼ 1/𝐺𝑁) needed to make the results perfectly 
consistent with a pure state. 
 


