

Particle Physics Data Analysis Tools

Gholamhossein Haghighat

School of Particles and Accelerators, IPM

4th IPM Workshop on Experimental Particle Physics

27 Dec 2023

Strategy for particle physics searches

Lagrangiar

Gauge symmetries	Particles	Parameters	Lagrangian
M\$ClassesDescription V[1] == { ClassName SelfConju Mass Width ParticleN PDG Propagatc Propagatc Propagatc FullName },[] V[4] = Class Self Indi Mass Width Propagatc Propagatc Propagatc Prop Prop Prop Prop Prop Prop Prop Prop Prop	<pre>= { > A, = { F[1] == { ClassName ClassNembers Indices FlavorIndex SelfConjugate Mass Width QuantumNumbers PropagatorLabel PropagatorType PropagatorArrow PDG ParticleName AntiParticleName FullName },[]</pre>	<pre>-> vl, -> {ve,vm,vt}, -> {Index[Generation -> Generation, -> False, -> 0, -> 0, -> {LeptonNumber -> -> {"v", "ve", "vm", -> S, -> Forward, -> {12,14,16}, -> {"ve", "vm", "vt"}, -> {"ve~", "vm~", "vt~ -> {"Electron-neutri "Tau-neutrino"}</pre>	<pre>]}, 1}, "vt"}, "}, no", "Mu-neutrino",</pre>

Gholamhossein Haghighat, 4th IPM Workshop on Experimental Particle Physics

Lagrangian

auge symmetri	es Particles	Parameters	Lagrangian
<pre>M\$Parameters = { aS == { ParameterType BlockName OrderBlock Value InteractionOrder TeX Description }, gs == { ParameterType Value InteractionOrder TeX ParameterName Description },[]</pre>	<pre>-> External, -> SMINPUIS, -> 3, -> 0.1184, -> {QCD,2}, -> Subscript[\[Alpha],s], -> "Strong coupling constant -> Internal, -> Sqrt[4 PI aS], -> {QCD,1}, -> Subscript[g,s], -> G, -> "Strong coupling constant</pre>	at the Z pole" at the Z pole"	

Gholamhossein Haghighat, 4th IPM Workshop on Experimental Particle Physics

Lagrangiar

Gauge symmetries	Particles	Parameters	Lagrangian
LFermions := Block[ExpandIndices[I*(QLbar.Ga[mu].DC uRbar.Ga[mu].DC lRbar.Ga[mu].DC	{mu}, [QL, mu] + [uR, mu] + [lR, mu]),	LLbar.Ga[mu].DC[LL, dRbar.Ga[mu].DC[dR, FlavorExpand->{SU2W	mu] + mu] + ,SU2D}]

WriteUFO[LSM]
$$\rightarrow$$

UFO becoming the standard

Gholamhossein Haghighat, 4th IPM Workshop on Experimental Particle Physics

Lagrangiar

 $\mathcal{M} = \overline{u} \gamma^{\mu} v P_{\mu\nu} \overline{u} \gamma^{\nu} v$

Particles

Lagrangiar

FeynmanRules

Particles Propagators Lagrangiar

FeynmanRules

> Helicity amplitude routines needed for the Standard Model, MSSM, ..., in hand-written library

Any new Lorentz structure needs addition by hand prestriction on types of models that could be implemented in MadGraph

Gholamhossein Haghighat, 4th IPM Workshop on Experimental Particle Physics

Lagrangia

$$P(\boldsymbol{x}, \alpha) =$$

$$Probability of observing \boldsymbol{x}$$

$$predicted by the model \boldsymbol{\alpha}$$

$$\boldsymbol{x}: experimental measurements}$$

$$P(\boldsymbol{x}, \alpha) =$$

$$Probability of observing \boldsymbol{x}$$

$$predicted by the model \boldsymbol{\alpha}$$

$$\boldsymbol{x: experimental measurements}$$

 $|M_{\alpha}|^2(\boldsymbol{x})$

Squared matrix element

 $|M_lpha|^2(oldsymbol{y})W(oldsymbol{x},oldsymbol{y})$

Squared matrix element

Resolution function y: partonic momenta (experimental extraction)

Probability of observing **x** predicted by the model **a x:** experimental measurements

 $P(\boldsymbol{x}, \alpha) =$

$$P(\boldsymbol{x}, \alpha) = \frac{1}{\sigma} \int d\phi(\boldsymbol{y})$$

$$\downarrow$$
Partonic phase-space measure

Probability of observing **x** predicted by the model **a x:** experimental measurements $|M_{\alpha}|^2(\boldsymbol{y})W(\boldsymbol{x},\boldsymbol{y})$ (\mathbf{x},\mathbf{y}) (\mathbf{x},\mathbf{y})

Squared matrix element

Resolution function y: partonic momenta (experimental extraction)

Lagrangiar

Lagrangian

$$P(\boldsymbol{x}, \alpha) = \frac{1}{\sigma} \int d\phi(\boldsymbol{y}) dw_1 dw_2 f_1(w_1) f_2(w_2) |M_{\alpha}|^2(\boldsymbol{y}) W(\boldsymbol{x}, \boldsymbol{y})$$

$$Partonic phase-space measure$$

$$Probability of observing \boldsymbol{x}$$

$$Parton Distribution$$

$$predicted by the model \boldsymbol{a}$$

$$\boldsymbol{x}: experimental measurements$$

$$Propagators: \frac{1}{|q^2 - M^2 + iM\Gamma|^2}$$

Gholamhossein Haghighat, 4th IPM Workshop on Experimental Particle Physics

Lagrangian

Weighting experimental events with MadWeight Monte-Carlo integration

Monte Carlo (MC) method: a method to obtain deterministic results from random values

Gholamhossein Haghighat, 4th IPM Workshop on Experimental Particle Physics

Lagrangiar

FeynmanRules

Weighting experimental events with MadWeight Monte-Carlo integration

Lagrangian

FeynmanRules

Weighting experimental events with MadWeight Monte-Carlo integration

Weighting experimental events with MadWeight Importance sampling

Lagrangiar

FeynmanRules

Weighting experimental events with MadWeight Importance sampling

Weighting experimental events with MadWeight VEGAS (Adaptative Monte-Carlo)

Any peak is aligned along a single direction of the P-S parameterization Integration is very efficient Lagrangia

FeynmanRules

Weighting experimental events with MadWeight VEGAS (Adaptative Monte-Carlo)

Some peaks are not aligned along a single direction of the P-S parameterization Integration converges slowly

Lagrangiar

FeynmanRules

Weighting experimental events with MadWeight VEGAS (Adaptative Monte-Carlo)

Some peaks are not aligned along a single direction of the P-S parameterization Integration converges slowly Solution: perform a change of variables

Gholamhossein Haghighat, 4th IPM Workshop on Experimental Particle Physics

Lagrangia

FeynmanRules

Weighting experimental events with MadWeight Multi-channel Monte-Carlo

What if there is no transformation that aligns all integrand peaks to the chosen axes?

Weighting experimental events with MadWeight Multi-channel Monte-Carlo

What if there is no transformation that aligns all integrand peaks to the chosen axes? Solution: use different transformations (channels)

$$p(x) = \sum_{i=1}^{n} \alpha_i p_i(x) \qquad \sum_{i=1}^{n} \alpha_i = 1$$

Gholamhossein Haghighat, 4th IPM Workshop on Experimental Particle Physics

Lagrangia

 \approx

Weighting experimental events with MadWeight

Example

Three very different pole structures contributing to the same matrix element

$$p(x) = \sum_{i=1}^{n} \alpha_i p_i(x) \qquad \sum_{i=1}^{n} \alpha_i = 1$$
$$\int |M_{tot}|^2 = \int \frac{\sum_i |M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2 = \sum_i \int \frac{|M_i|^2}{\sum_j |M_j|^2} |M_{tot}|^2$$

Gholamhossein Haghighat, 4th IPM Workshop on Experimental Particle Physics

Lagrangia

1. pick x distributed as p(x)

2. pick 0 < y < p(x)

3. *if* y<*f*(*x*) *accept event, else reject it*

Same number of events in areas of phase space with different probabilities Events must have different weights (weighted)

Number of events is proportional to the probability of areas of phase space Events have the same weight (unweighted)

Events distributed as in nature

Pythia adds parton showers, multiparton interactions, hadronization and decay

Matching to parton shower

Matching to parton shower

PARTON

Detector simulation tools

Detector simulation tools

Fast detector simulation for phenomenological studies Based on the parameterization of the detector response

Lagrangiar

FeynmanRules

Fast detector simulation for phenomenological studies Based on the parameterization of the detector response

See how Delphes works

No real tracking in Delphes

GEometry ANd Tracking

A Monte Carlo software toolkit to simulate the passage of particles through matter

Gholamhossein Haghighat, 4th IPM Workshop on Experimental Particle Physics

Lagrangian

FeynmanRules

A gift from particle physics Widely used

Digitization

> Describe the geometry and the material of the detector

- > Describe the geometry and the material of the detector
- > Treat a particle at a time

- > Describe the geometry and the material of the detector
- > Treat a particle at a time
- > Trajectory of the particle is split in steps (finite displacements)

- > Describe the geometry and the material of the detector
- > Treat a particle at a time
- > Trajectory of the particle is split in steps (finite displacements)
- Simulate the physics along a step and at the end of each step

- > Describe the geometry and the material of the detector
- > Treat a particle at a time
- > Trajectory of the particle is split in steps (finite displacements)
- Simulate the physics along a step and at the end of each step

convert the energy deposit into electric signal

- > Describe the geometry and the material of the detector
- > Treat a particle at a time
- > Trajectory of the particle is split in steps (finite displacements)
- Simulate the physics along a step and at the end of each step

Digitization

- Convert the energy deposit into electric signal
- Identify the sensitive part of the detector

- > Describe the geometry and the material of the detector
- > Treat a particle at a time
- > Trajectory of the particle is split in steps (finite displacements)
- Simulate the physics along a step and at the end of each step

Digitization

- convert the energy deposit into electric signal
- > Identify the sensitive part of the detector
- > Modelize detector answer

MC Simulation of Particle Interactions with Matter

> The exponential law:

P(x): probability of not having an interaction after a distance x w dx: probability of having an interaction between x and x+dx

 $P(x+dx) = P(x)(1-w\,dx)$ $P(x) = e^{-WX}$ $P_{int}(x) = 1 - e^{-WX}$

Now use the inverse method to generate an interaction: $xw = -\ln(1-\alpha)$

 $P_{int} = \alpha$: uniform random number of [0,1]

[0.1109/TNS.2006.869826]

Particle Transportation: How to Determine a Step

1) Evaluate x using α , w for each physical process independently (xw = -ln(1- α))

- 1) Evaluate x using α , w for each physical process independently (xw = -ln(1- α))
- 2) Compare: process with minimum x determines the step length

- 1) Evaluate x using α , w for each physical process independently (xw = -ln(1- α))
- 2) Compare: process with minimum x determines the step length
- 3) Transport particle for the determined step

- 1) Evaluate x using α , w for each physical process independently (xw = ln(1- α))
- 2) Compare: process with minimum x determines the step length
- 3) Transport particle for the determined step
- *4) If the particle is still alive after the interaction, do the sampling again and continue transportation*

- 1) Evaluate x using α , w for each physical process independently (xw = ln(1- α))
- 2) Compare: process with minimum x determines the step length
- 3) Transport particle for the determined step
- 4) If the particle is still alive after the interaction, do the sampling again and continue transportation
- 5) If the particle disappears after the interaction, then the transportation is terminated

Lagrangia

FeynmanRules

matrix-element

parton events

shower/hadronize events

Detector events

***** *ROOT is written in C++ and is designed for*

- Data processing
- Data analysis
- Data visualization
- Data storage
- **Widely used in High Energy Physics and other sciences/industry**
- **Can be used for petabytes/year rates of data**

- * Provides Python Bindings C++
- I/O: row-wise, column-wise storage of any C++ object
***** *Modes of work*:

- Interactive (ROOT prompt with CLING interpreter)
 - *interpretted* C++ *commands*
 - -Macros: interpretted or (Just In Time) compiled
- As compilable C++ code : using Root libraries

[haghighat@SuperMicro10 SR1]\$ root

```
Welcome to ROOT 6.22/06 https://root.cern
(c) 1995-2020, The ROOT Team; conception: R. Brun, F. Rademakers
Built for linuxx8664gcc on Nov 27 2020, 15:14:08
From tags/v6-22-06@v6-22-06
Try '.help', '.demo', '.license', '.credits', '.quit'/'.q'
```


Data Analysis Frameworl

root [0]

Examples of what ROOT provides:

ROOT

> Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple

Histograms

ROOT

***** Examples of what ROOT provides:

> Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple

ROOT

***** Examples of what ROOT provides:

> Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple

Trees

- Data structure provided to store large quantities of objects
- Organized in branches, each one holding objects
- Organized in independent events, e.g. collision events
- Efficient disk space usage, optimized I/O runtime

ROOT

***** Examples of what ROOT provides:

Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple

Ntuples

A simplified version of the TTree: store only floating point numbers

ROOT

- Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple
- Statistical tools: RooFit/RooStats

ROOT

- > Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple
- Statistical tools: RooFit/RooStats
- > A rich collection of functions (also user-defined functions: **TF1**)

ROOT

- ***** Examples of what ROOT provides:
 - Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple
 - > Statistical tools: RooFit/RooStats
 - > A rich collection of functions (also user-defined functions: TF1)
 - > Multivariate Analysis: TMVA (e.g. Boosted decision trees, neural networks)

ROOT

- > Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple
- > Statistical tools: RooFit/RooStats
- > A rich collection of functions (also user-defined functions: TF1)
- > Multivariate Analysis: TMVA (e.g. Boosted decision trees, neural networks)
- Geometry Toolkit: represent geometries as complex as detectors

ROOT

- ***** Examples of what ROOT provides:
 - > Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple
 - Statistical tools: RooFit/RooStats
 - > A rich collection of functions (also user-defined functions: **TF1**)
 - > Multivariate Analysis: TMVA (e.g. Boosted decision trees, neural networks)
 - Geometry Toolkit: represent geometries as complex as detectors
 - > Event Display (EVE): visualize particles collisions in detectors

Lagrangia

ROO

- ***** Examples of what ROOT provides:
 - Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple
 - > Statistical tools: RooFit/RooStats
 - > A rich collection of functions (also user-defined functions: TF1)
 - > Multivariate Analysis: TMVA (e.g. Boosted decision trees, neural networks)
 - Geometry Toolkit: represent geometries as complex as detectors
 - > Event Display (EVE): visualize particles collisions in detectors
 - > **PyROOT:** bindings to interface to Python

ROO

- ***** Examples of what ROOT provides:
 - Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple
 - > Statistical tools: RooFit/RooStats
 - > A rich collection of functions (also user-defined functions: TF1)
 - > Multivariate Analysis: TMVA (e.g. Boosted decision trees, neural networks)
 - Geometry Toolkit: represent geometries as complex as detectors
 - > Event Display (EVE): visualize particles collisions in detectors
 - > **PyROOT:** bindings to interface to Python
 - > **PROOF:** parallel analysis facility
 - Run in parallel on a large number of computers
 - **Proof-lite:** use multiple cores to run on a desktop machine

We will see how to use the packages in the hands on session

