Particle Physics Data Analysis Tools

Gholamhossein Haghighat
School of Particles and Accelerators, IPM

4th IPM Workshop on
Experimental Particle Physics
27 Dec 2023

Strategy for particle physics searches

* Find excess over SM background
* Identify models compatible with excess
* Look for predicted excesses in other channels
* Determine underlying model

Simplified LHC event

From theory to detector

Lagrangian

From theory to detector

* Mathematica package to derive Feynman rules from a Lagrangian
* Available at feynrules.irmp.ucl.ac.be

Lagrangian

FeynmanRules

Gauge symmetries

* Mathematica package to derive Feynman rules from a Lagrangian
* Available at feynrules.irmp.ucl.ac.be

Lagrangian
Gauge symmetries Particles Parameters Lagrangian

FeynRules

* Mathematica package to derive Feynman rules from a Lagrangian
* Available at feynrules.irmp.ucl.ac.be

Lagrangian

FeynmanRules

Gauge symmetries Particles Parameters Lagrangian

```
M$Parameters = {
    aS == {
        ParameterType
        BlockName
        OrderBlock
        Value
        InteractionOrder
        TeX
        Description
    },
    gs == {
        ParameterType
        Value
        InteractionOrder
        TeX
    ParameterName
    Description
    },[...]
```

CKM == $\{$
ParameterType \rightarrow Internal,
Indices $\quad>$ \{Index[Generation], Index[Generation]\},
Unitary
\rightarrow True,
\rightarrow \{CKM $[1,1] \rightarrow$ Cos[cabi], CKM[1,2] \rightarrow Sin[cabi],
\rightarrow Cos[cabi]
CKM $[3,2] \rightarrow 0$,
CKM $[1,3] \rightarrow 0$,
CKM $[2,1]$-> -Sin[cabi]
CKM $[3,1] \rightarrow 0, \quad$ CKM $[3,2] \rightarrow 0, \quad$ CKM $[3,3] \rightarrow 1\}$,
$\operatorname{CKM}[2,3] \rightarrow 0$,
Description -> "CKM-Matrix"\}

* Mathematica package to derive Feynman rules from a Lagrangian
* Available at feynrules.irmp.ucl.ac.be
Gauge symmetries Particles Parameters Lagrangian

```
LFermions := Block[{mu},
    ExpandIndices[I*(
        QLbar.Ga[mu].DC[QL, mu] + LLbar.Ga[mu].DC[LL, mu] +
        uRbar.Ga[mu].DC[uR, mu] + dRbar.Ga[mu].DC[dR, mu] +
        lRbar.Ga[mu].DC[lR, mu]), FlavorExpand->{SU2W,SU2D}]
```

WriteUFO[LSM] \rightarrow
UFO becoming the standard

MadGraph5

[arXiv:1405.0301]

Computing amplitudes with HELAS
(HELicity Amplitude Subroutine)
Evaluate \mathcal{M} for fixed helicity of external particles

FeynmanRules

$$
\mathcal{M}=\bar{u} \gamma^{\mu} v P_{\mu \nu} \bar{u} \gamma^{\nu} v
$$

MadGraph5

[arXiv:1405.0301]

Computing amplitudes with HELAS
(HELicity Amplitude Subroutine)
Evaluate \mathcal{M} for fixed helicity of external particles

FeynmanRules

Particles

MadGraph5

[arXiv:1405.0301]

Computing amplitudes with HELAS (HELicity Amplitude Subroutine)
Evaluate \mathcal{M} for fixed helicity of external particles

FeynmanRules

MadGraph5

[arXiv:1405.0301]

Computing amplitudes with HELAS
(HELicity Amplitude Subroutine)
Evaluate \mathcal{M} for fixed helicity of external particles

FeynmanRules
matrix-element

$>$ Helicity amplitude routines needed for the Standard Model, MSSM, ..., in hand-written library
$>$ Any new Lorentz structure needs addition by hand \Rightarrow restriction on types of models that could be implemented in MadGraph

MadGraph5

[arXiv:1405.0301]

Computing amplitudes with HELAS
(HELicity Amplitude Subroutine)
Evaluate \mathcal{M} for fixed helicity of external particles

FeynmanRules

MadGraph5

[arXiv:1405.0301]

Weighting experimental events with MadWeight
$P(\boldsymbol{x}, \alpha)=$
$\begin{gathered}\text { Probability of observing } \boldsymbol{x} \\ \text { predicted by the model } \boldsymbol{\alpha}\end{gathered}$
$\boldsymbol{x}:$ experimental measurements

MadGraph5

[arXiv:1405.0301]

Weighting experimental events with MadWeight
$P(\boldsymbol{x}, \alpha)=$

Probability of observing \boldsymbol{x} predicted by the model $\boldsymbol{\alpha}$
x : experimental measurements

MadGraph5

[arXiv:1405.0301]

Weighting experimental events with MadWeight

MadGraph5

[arXiv:1405.0301]

Weighting experimental events with MadWeight

Probability of observing \boldsymbol{x} predicted by the model $\boldsymbol{\alpha}$
x : experimental measurements

Resolution function
y : partonic momenta (experimental extraction)

MadGraph5

[arXiv:1405.0301]

Weighting experimental events with MadWeight

$$
\begin{aligned}
& P(\boldsymbol{x}, \alpha)=\frac{1}{\sigma} \int d \phi(\boldsymbol{y}) d w_{1} d w_{2} f_{1}\left(w_{1}\right) f_{2}\left(w_{2}\right)\left|M_{\alpha}\right|^{2}(\boldsymbol{y}) W(\boldsymbol{x}, \boldsymbol{y}) \\
& \begin{array}{l}
\downarrow \\
\text { Partonic phase-space measure }
\end{array} \\
& \begin{array}{l}
\downarrow \\
\text { Squared matrix element }
\end{array} \\
& \text { Paility of observing } \boldsymbol{x} \\
& \text { cted by the model } \boldsymbol{\alpha} \\
& \text { imental measurements }
\end{aligned}
$$

MadGraph5

[arXiv:1405.0301]

Weighting experimental events with MadWeight

$$
\begin{aligned}
& \left.P(\boldsymbol{x}, \alpha)=\frac{1}{\sigma} \int \begin{array}{c}
d \phi(\boldsymbol{y}) d w_{1} d w_{2} f_{1}\left(w_{1}\right) f_{2}\left(w_{2}\right)\left|M_{\alpha}\right|^{2}(\boldsymbol{y}) W(\boldsymbol{x}, \boldsymbol{y}) \\
\downarrow \\
\text { Partonic phase-space measure }
\end{array} \begin{array}{c}
\downarrow \\
\text { Squared matrix element }
\end{array} \right\rvert\, \\
& \text { Parton Distribution }
\end{aligned}
$$

Probability of observing \boldsymbol{x} predicted by the model $\boldsymbol{\alpha}$
\boldsymbol{x} : experimental measurements

Functions

Resolution function
\boldsymbol{y} : partonic momenta (experimental extraction)

$$
W(\boldsymbol{x}, \boldsymbol{y}) \approx \prod_{i=E, \phi, \eta} \frac{1}{\sqrt{2 \pi} \sigma_{i}} e^{-\frac{\left(x_{i}-y_{i}\right)^{2}}{2 \sigma_{i}^{2}}}
$$

$$
\text { Propagators: } \frac{1}{\left|q^{2}-M^{2}+i M \Gamma\right|^{2}}
$$

FeynmanRules

MadGraph5

[arXiv:1405.0301]

Weighting experimental events with MadWeight Monte-Carlo integration

MadGraph5

[arXiv:1405.0301]

Weighting experimental events with MadWeight Monte-Carlo integration

FeynmanRules

MadGraph5

[arXiv:1405.0301]

Weighting experimental events with MadWeight Importance sampling

MadGraph5

[arXiv:1405.0301]

Weighting experimental events with MadWeight VEGAS (Adaptative Monte-Carlo)

FeynmanRules

Any peak is aligned along a single direction of the P-S parameterization Integration is very efficient

MadGraph5

[arXiv:1405.0301]

Weighting experimental events with MadWeight VEGAS (Adaptative Monte-Carlo)

Some peaks are not aligned along a single direction of the P-S parameterization Integration converges slowly

MadGraph5

[arXiv:1405.0301]

Weighting experimental events with MadWeight VEGAS (Adaptative Monte-Carlo)

FeynmanRules

MadGraph5

[arXiv:1405.0301]

Weighting experimental events with MadWeight
Multi-channel Monte-Carlo

What if there is no transformation that aligns all integrand peaks to the chosen axes?

MadGraph5

[arXiv:1405.0301]

Weighting experimental events with MadWeight Multi-channel Monte-Carlo

FeynmanRules

What if there is no transformation that aligns all integrand peaks to the chosen axes? Solution: use different transformations (channels)

$$
p(x)=\sum_{i=1}^{n} \alpha_{i} p_{i}(x) \quad \sum_{i=1}^{n} \alpha_{i}=1
$$

MadGraph5

[arXiv:1405.0301]

Weighting experimental events with MadWeight
Example

FeynmanRules

Three very different pole structures contributing to the same matrix element

$$
\begin{gathered}
p(x)=\sum_{i=1}^{n} \alpha_{i} p_{i}(x) \quad \sum_{i=1}^{n} \alpha_{i}=1 \\
\int\left|M_{t o t}\right|^{2}=\int \frac{\sum_{i}\left|M_{i}\right|^{2}}{\sum_{j}\left|M_{j}\right|^{2}}\left|M_{t o t}\right|^{2}=\sum_{i} \int \frac{\left|M_{i}\right|^{2}}{\sum_{j}\left|M_{j}\right|^{2}}\left|M_{t o t}\right|^{2}
\end{gathered}
$$

MadGraph5

[arXiv:1405.0301]

Generating events with MadEvent

FeynmanRules
matrix-element
parton events

MadGraph5

[arXiv:1405.0301]

Generating events with MadEvent

Same number of events in areas of phase space with different probabilities
Events must have different weights (weighted)

MadGraph5

[arXiv:1405.0301]

Generating events with MadEvent

FeynmanRules

parton events

Number of events is proportional to the probability of areas of phase space Events have the same weight (unweighted)

Events distributed as in nature

Matching to parton shower

Matching to parton shower

FeynmanRules
matrix-element
! ! !

Matching to parton shower

FeynmanRules
! ! !
matrix-element

r

Matching to parton shower

Matching to parton shower

Detector simulation tools

Detector simulation tools

Fast detector simulation for phenomenological studies
Based on the parameterization of the detector response

FeynmanRules
$\frac{?}{\text { matrix-element }}$
matrix-element

hower/hadronize events

Detector events

Delphes

Fast detector simulation for phenomenological studies Based on the parameterization of the detector response

No real tracking in Delphes

GEANT

[0.1109/TNS.2006.869826]

GEometry ANd Tracking
A Monte Carlo software toolkit to simulate the passage of particles through matter

Lagrangian

FeynmanRules

Detector events

Particle-Matter interaction

Digitization

GEANT

[0.1109/TNS.2006.869826]

G Geant4

Particle-Matter interaction

$>$ Describe the geometry and the material of the detector

GEANT

[0.1109/TNS.2006.869826]

Particle-Matter interaction

$>$ Describe the geometry and the material of the detector
$>$ Treat a particle at a time

GEANT

[0.1109/TNS.2006.869826]

G) Geant4

Particle-Matter interaction

$>$ Describe the geometry and the material of the detector
> Treat a particle at a time
$>$ Trajectory of the particle is split in steps (finite displacements)
a point where a physics
process occurred
start point

GEANT

[0.1109/TNS.2006.869826]

Particle-Matter interaction

> Describe the geometry and the material of the detector
> Treat a particle at a time
$>$ Trajectory of the particle is split in steps (finite displacements)
$>$ Simulate the physics along a step and at the end of each step

Elastic scattering

Inelastic scattering

Bremsstrahlung emission

GEANT

[0.1109/TNS.2006.869826]

Particle-Matter interaction

$>$ Describe the geometry and the material of the detector
> Treat a particle at a time
$>$ Trajectory of the particle is split in steps (finite displacements)
$>$ Simulate the physics along a step and at the end of each step

$>$ convert the energy deposit into electric signal

GEANT

[0.1109/TNS.2006.869826]

Particle-Matter interaction

Digitization

$>$ convert the energy deposit into electric signal
> Identify the sensitive part of the detector

GEANT

[0.1109/TNS.2006.869826]

Particle-Matter interaction

Digitization

$>$ convert the energy deposit into electric signal
$>$ Identify the sensitive part of the detector

- Modelize detector answer

GEANT

MC Simulation of Particle Interactions with Matter

$>$ The exponential law:
$P(x)$: probability of not having an interaction after a distance x $w d x: p r o b a b i l i t y ~ o f ~ h a v i n g ~ a n ~ i n t e r a c t i o n ~ b e t w e e n ~ x a n d ~ x+d x$
depends on
material and
physical process

$$
P(x+d x)=P(x)(1-w d x)
$$

$$
P(x)=e^{-w x} \quad P_{\text {int }}(x)=1-e^{-w x}
$$

matrix-element

Now use the inverse method to generate an interaction:

$$
P_{\text {int }}=\alpha: \text { uniform random number of }[0,1] \Rightarrow x w=-\ln (1-\alpha)
$$

Particle Transportation: How to Determine a Step

Particle Transportation: How to Determine a Step

1) Evaluate \boldsymbol{x} using α, w for each physical process independently $(x w=-\ln (1-\alpha))$

GEANT

[0.1109/TNS.2006.869826]

9 Geant4
 A simuLation toolkit

Particle Transportation: How to Determine a Step

1) Evaluate x using α, w for each physical process independently $(x w=-\ln (1-\alpha))$
2) Compare: process with minimum \boldsymbol{x} determines the step length

GEANT

[0.1109/TNS.2006.869826]

G Geant4

Particle Transportation: How to Determine a Step

1) Evaluate x using α, w for each physical process independently $(x w=-\ln (1-\alpha))$
2) Compare: process with minimum \boldsymbol{x} determines the step length
3) Transport particle for the determined step

GEANT

Particle Transportation: How to Determine a Step

1) Evaluate x using α, w for each physical process independently $(x w=-\ln (1-\alpha))$
2) Compare: process with minimum \boldsymbol{x} determines the step length
3) Transport particle for the determined step
4) If the particle is still alive after the interaction, do the sampling again and continue transportation

GEANT

Particle Transportation: How to Determine a Step

1) Evaluate x using α, w for each physical process independently $(x w=-\ln (1-\alpha))$
2) Compare: process with minimum \boldsymbol{x} determines the step length
3) Transport particle for the determined step
4) If the particle is still alive after the interaction, do the sampling again and continue transportation
5) If the particle disappears after the interaction, then the transportation is
 terminated

GEANT

[0.1109/TNS.2006.869826]

G Geant4
 A simulation tookit

ROOT

[10.1016/S0168-9002(97)00048-X]

ROOT is written in C++ and is designed for

- Data processing
- Data analysis
- Data visualization
- Data storage

Widely used in High Energy Physics and other sciences/industry

- Can be used for petabytes/year rates of data

FeynmanRules

* Provides Python Bindings C++

ROOT

[10.1016/S0168-9002(97)00048-X]

* Modes of work:
- Interactive (ROOT prompt with CLING interpreter)
- interpretted C++ commands
- Macros : interpretted or (Just In Time) compiled
- As compilable C++ code : using Root libraries

Lagrangian

FeynmanRules

8

parton events

hower/hadronize events
https://root.cern
(c) 1995-2020, The ROOT Team; conception: R. Brun, F. Rademakers Built for linuxx8664gcc on Nov 27 2020, 15:14:08
From tags/v6-22-06@v6-22-06
ROOT
Try '.help', '.demo', '.license', '.credits', '.quit'/'.q'
root [0]

* Examples of what ROOT provides:

* Examples of what ROOT provides:
> Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple

Histograms

Lagrangian

FeynmanRules
matrix-element
?
parton events

ROOT

* Examples of what ROOT provides:
$>$ Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple

Graphs

FeynmanRules

ROOT

* Examples of what ROOT provides:
> Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple

Trees

- Data structure provided to store large quantities of objects
- Organized in branches, each one holding objects
- Organized in independent events, e.g. collision events
- Efficient disk space usage, optimized I/O runtime

* Examples of what ROOT provides:
$>$ Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple

Ntuples

A simplified version of the TTree: store only floating point numbers

ROOT
[10.1016/S0168-9002(97)00048-X]

* Examples of what ROOT provides:
> Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple
$>$ Statistical tools: RooFit/RooStats

FeynmanRules

ROOT

ROOT

[10.1016/S0168-9002(97)00048-X]

* Examples of what ROOT provides:
> Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple
> Statistical tools: RooFit/RooStats
$>$ A rich collection of functions (also user-defined functions: TF1)
$[0]^{*} \sin \left([1]^{*} x\right) / x$

[10.1016/S0168-9002(97)00048-X]

$>$ Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple
> Statistical tools: RooFit/RooStats
$>$ A rich collection of functions (also user-defined functions: TF1)
> Multivariate Analysis: TMVA (e.g. Boosted decision trees, neural networks)

FeynmanRules
matrix-element
昌
parton events

ROOT

ROOT

[10.1016/S0168-9002(97)00048-X]

FeynmanRules
matrix-element
暑
parton events
量
hower/hadronize events

ROOT

[10.1016/S0168-9002(97)00048-X]

* Examples of what ROOT provides:
> Histograms, graphs, trees, ntuples: TH1,TGraph,TTree,TNtuple
> Statistical tools: RooFit/RooStats
$>$ A rich collection of functions (also user-defined functions: TF1)
> Multivariate Analysis: TMVA (e.g. Boosted decision trees, neural networks)
$>$ Geometry Toolkit: represent geometries as complex as detectors
> Event Display (EVE): visualize particles collisions in detectors

[10.1016/S0168-9002(97)00048-X]

ROOT

［10．1016／S0168－9002（97）00048－X］
＊Examples of what ROOT provides：
＞Histograms，graphs，trees，ntuples：TH1，TGraph，TTree，TNtuple
＞Statistical tools：RooFit／RooStats
$>$ A rich collection of functions（also user－defined functions：TF1）
$>$ Multivariate Analysis：TMVA（e．g．Boosted decision trees，neural networks）
$>$ Geometry Toolkit：represent geometries as complex as detectors
＞Event Display（EVE）：visualize particles collisions in detectors
＞PyROOT：bindings to interface to Python

Lagrangian

Reyman
＞PROOF：parallel analysis facility
－Run in parallel on a large number of computers
－Proof－lite：use multiple cores to run on a desktop machine

We will see how to use the packages in the hands on session

