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Conformal Field Theory 

• A quantum Field Theory with conformal 
invariance; in 2d.  

• This invariance is so large that we end up with an 
integrable quantum field theory; so we need to 
know about : 
– Quantum Mechanics 

– Quantum Field Theory 

– Symmetry in Field Theory           Integrability 

– Integrable Quantum Field Theory         YBE+Quantum 
groups 
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Axioms of Quantum Mechanics 

1. To every physical state, corresponds a vector 
(states) in a Hilbert space H. 

 

2. There exists a unique       vacuum (ground 
state) , a state in H corresponding to “rest” or 
“nothing”.  All physical states have higher 
energy. And vacuum is normalizable : 
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Axioms of Quantum Mechanics 

3. There is the space of linear operators on H;  

 

a. observables are Hermitian operators: 

 

b. There exists two distinguished operators in D, the 
Identity: I, and the Hamiltonian: 

4. The dynamics is given by the Hamiltonian 
operator  
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Axioms of Quantum Mechanics 

5. Symmetries are operators that commute with the 
Hamiltonian: 

 
6. This mean that symmetries annihilate the vacuum: 
 

Otherwise the uniqueness of the vacuum would be 
challenged,  
The Identity operator is also unique. 
If the operators Sa are many and they form an algebra 
the vacuum is annihilated by all the algebra for example 
the so(3) algebra, and the ground state of the hydrogen 
atom is an S-wave. 

0]ˆ,[ HS

00 S



Axioms of Quantum Mechanics 

All this goes over to QFT, except for the 
reduction of state under observation which 
seems to be problematic: 

7. In an experimental observation of the 
Hermitian operator O,  the state is reduced to 
one of the eignestates of O with probability  
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Quantum Field Theory 

Lets move on to axioms of field theory now: 

1. Hilbert Space, H 
2. Existence and uniqueness of vacuum, W in H 
3. Underlying manifold (space-time) M, with a 

metric 
4. There exists a unitary representation U, of 

the group of isometries of M acting on H. 
Usually this is the Poincare group, but in CFT 
this is the affine extension of sl(2,R). 



Quantum Field Theory 
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5. Collection of field operators a (x), x e M 
which are distributions . So we need test functions f(x) to use : 

 
 
 
 

A natural question arises as to how much Physics depends  
on the choice of f,  the answer lies in the Renormalization 
Group equations.  
Test functions should remain uniform throughout the manifold; 
RG governs the change in a: 
 
    f(X): 
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Quantum Field Theory 

1. The vacuum should remain invariant under 
symmetry: UWW 

2. The domain of action of the field operators in 
H is invariant 

3. The action of U on   is given by conjugation: 

 

In the case of CFT this requirement is relaxed 
a bit and we allow more complex 
transformation law. 
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Quantum Field Theory 

4. Locality; if support of f and g are space-like 
then: 

 

5. Spectrum: The joint spectrum of the 
momenta is constrained in the forward light 
cone.  
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Quantum Field Theory 
Wightman Distributions 

Define the n-point correlation functions: 

 

 

Should have various properties, such as 
invariance under symmetry, positive 
definiteness, cluster property etc. These are 
objects of “observation” in experiments. 
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Euclidean Quantum Field Theory 
Wightman Distributions 

The n-point correlation functions: 

 

 

Can be analytically continued into the imaginary 
“time” (changes M from Pseudo-Riemannian 
into Riemannian ) 
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Conformal Field Theory 

Lets us now move on to conformal invariance : 
The symmetry of the underlying manifold (space-time) M, is 
enlarged to so(d,2).  
So dilations: 
 
and Special conformal transformations 
 are included: 
 
 
In d=2, this algebra enlarges to the Virasoro algebra which is the affine 
extension of sl(2,R), however more care has to be exercised since invariance 
of correlation functions under an infinite symmetry algebra leaves nothing 
but a constant behind ! 
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Conformal Field Theory 

1. First complexified coordinates are used which 
mimic the light cone z=t+i x, treated 
independent of z*, usually referred to as: 

2. The symmetry of the correlation functions is 
so(2,2)/Z2 or sl(2,R)/ Z2 

 

 

3. A similar transformation is required for  
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Conformal Field Theory 

4. So the symmetry is really sl(2,R)xsl(2,R). 

5. The representation of this symmetry on the 
Hilbert space and field operators is given by 
U(g): 

 

 

the conformal weights           are generally 
independent of each other,                 is 
referred to as spin. Should s be integer? 
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Parafermions 

• Parafermions is a name given to fields with 
fractional Spin  

• eg ZN symmetric theories with central charge  
c= 2(N −1)/(N +2) (N=2 Ising, N=3 Potts model) 

• V. A. Fateev and A. B. Zamolodchikov,Sov. 
Phys. JETP 62, 215 (1985) 

• Parafermions are also related to discrete 
holomorphicity 



Discrete Holomorphicity 

• Extend the concept of Cauchy-Riemann 
conditions to a lattice: 

 

 

 

• This is the discrete version of the Cauchy 
integral.  

• F is not entirely fixed by these conditions 



Discrete Holomorphicity 

• Parafermions satisfy these conditions 
automatically, but only at critical and 
integrable points of lattice models 

• All correlation functions defined in terms of 
Parafermion fields are discrete holomorphic 



Conformal Field Theory 

The general holomorphic transformation 

acts on the fields as : 

 

 

 

However we do not require the correlation 
functions to be invariant under these 
transformations, just covariant! 
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Axiomatic Conformal Field Theory 

Now, guided by the axioms of quantum field theory 
we attempt at constructing a number of axioms for 
Quantum Conformal Field Theory or CFT for short. 

•The basic objects are fields adefined over the 
complex plane (M) with signature (+,+). The 
relevance to equilibrium statistical mechanics makes 
this signature more popular. 

•The fields, or field operators, or operators have a 
number of properties, they are defined as maps on 
open subsets of the complex plane. 



Axiomatic Conformal Field Theory 

•Fields take their values in O(H), (possibly 
unbounded, mostly self adjoint operators acting on a 
Hilbert space. 

•To be precise these these field operators are 
defined only on the spaces of test functions on M, ie 
the Scwartz space S(M), of rapidly decreasing test 
functions. 

•The matrix coefficients,   where u 
and v are members of H and <,> is the inner product 
of H; are well defined. 
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Axiomatic Conformal Field Theory 

•The essential parameters of the theory are the 
correlation functions, which connect up with 
experiments and observations: 

 

 

•Loosely written as holomorphic functions over 
the complex plane, ignoring the test functions, 
and the anti-holomorphic part. 
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Axiomatic Conformal Field Theory 

• They are time ordered products of fields in 
order to respect causality 

 

These correlation functions can usually be 
continued to  
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Axiomatic Conformal Field Theory 
Notation 
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Here S is a Schwartz space of rapidly decreasing  
smooth functions   

CS  :0

The group of Mobius transformations Mb 
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Osterwalder-Schrader Axioms 

Let B be a countable index set, we also use the 
notation i=i1,i2,…, i e Bn . CFT is describbed by a 
family of continuous and polynomially 
bounded correlation functions, 

 

 

Subject to the following axioms:  
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Axiom 1 (Locality) 
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Axiom 2 (Invariance) 
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Note that if w is a general analytic function then we ask  
for Covariance and not Invariance 



Here                 is called the conformal spin and  

                is called the scaling dimension. We assume 
that                , see  
 

NS Hawley and M Schiffer “Half Order differentials on Rieman surfaces”, Acta. 
Math. 115(1966)175  

The covariance  of the fields in axiom 2 corresponds to 
generalized differential forms  under change of coordinates.  

By covariance we mean that the correlation function 
changes under transformation but in a certain specific 
manner. 
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Invariance of Correlation Functions 

The invariance axiom severly restricts the form 
of correlation functions: 

1-because of translations all correlation 
functions depend only on differences  

2-Two point functions are determined up to a 
constant : 
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Examples: 

 1.,0  consGhh

It is therefore natural to interpret the field with zero  
conformal weight as identity operator 
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LCFT 

Note that for the case of                                   these 
axioms hold except for scaling transformation, this 
is the case of logarithmic conformal field theories 
where a pair of fields  transform into each other 
and together make the axioms  correct. 
 
 
 
This is the case of reducible but not decomposable  
representations 
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Gaussian example 

The functions Gn are zero if n is odd. They are 
given by: 

 

 

Where Sn is the group of permutations of n 
objects. Conformal weights are h=1. 
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Axiom 3 (reflection Positivity) 

There is a map *:B -> B, i->i* the * map takes z 
to its complex conjugate.  

1- 

2-for all 
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Reconstruction of the Hilbert Space 

Axiom 3 provides us with a positive definite 
hermitian form on the Hilbert space, providing 
an inner product : 
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Reconstruction of the field operators 
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2- Further more the unitary transformation effects the   
analytic transformation of the operator 



Reconstruction of the field operators 

3-The matrix coefficients can be represented by  

analytic functions 
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So far what has been said holds for any 2d QFT,  
what follows is specific to CFT  



CFT 

• What we set out so far holds for any 2d QFT, 
so let us now specialise to 2d CFT  

• Note that special conformal transformations 
will not be required ! As it is a consequence of 
dilatins and conservation of T 



CFT 

A 2d Quantum Field Theory is a conformal Field 
Theory if the following holds: 

4. The theory is invariant w.r.t. to dilations 

5. It has a divergence free energy-momentum 
tensor 

6. It has an associative operator product 
expansion (OPE) for the primary fields 



Dilation Invariance 

• The correlation function  
Is invariant under scale trans. Z->  z, for all 

arguments. 
 
• This implies that the 2-point function has a 

specific form: 
 
 

• Similar results for 3-pt function and less 
restrictive on 4-pt function 
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Conformal Ward Identities 

Under the assumption that G is invariant under 
the Mobius transformations, we have: 
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Conformal Ward Identities 

The proof of these identities follows from 
covariance properties of the fields under Mobius 
transformations. In case of n=4 we observe that 
these differential equations may be solved to yield: 

 

 

 
 

Anti-holomorphic coordinates follow a similar pattern 
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Energy-Momentum Tensor 

Among the field operators, there must exist 4 
operators        which are the generators of the 
Mobius transformations, they are conserved and 
traceless. These conditions can be re-written to 
express it as a single holomorphic operator 
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Energy-Momentum Tensor 

Clear that the conformal dimension is simple: 
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Integrable Quantum Field Theory 

• Clealry the energy-momentum tensor is a 
conserved current,  

• but there exists an infinity of them 

 

So we are dealing with an IQFT, albeit a specially 
simple one !  

• You can perturb CFT in an integrable direction, 
eg mass 
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Integrable Quantum Field Theory 
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Perturbing the CFT away from conformal point can 
still remain integrable, but T will no longer be 
holomorphic  
 
 
 
 However an infinite number of conserved currents remain: 
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Virasoro Generators 

A Laurent expansion of T(z) yields the Virasoro 
generators: 

 

 

 

Simiral operations for the anti-holomorphic 
sector hold with a different central charge: 

So we have the following symmetry  
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Virasoro Generators 

The operators Ln and Ln define a unitary 
representation of                     over the Hilbert space. 
In general these representations decompose into 
irreducible units (Verma Modules) based on highest 
weight representations, W(c,h) 

 
 

The sum is over a suitable collection of central charge and 
conformal weights. If there a finite number of terms in the 
above sum t is called a “minimal” theory. 
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Primary and Secondary Fields 

Field operators should in general have the same 
covariant properties under the action of the Virasoro 
algebra as the correlation functions, if these is the case 
we call the Primary operators: 

 

The unit operator would be a simple example with h=0, 
Secondary fields, which are derived from Primary fields 
may have a more convoluted transformation, the 
energy momentum operator is an example. 
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Operator Product Expansion  
(OPE) 

The divergent nature of QFT and the fact that 
field operators are distributions leads us to 
expect that the product of two field operators at 
the same point becomes divergent. But the 
product of two field operators is postulated to 
stay within the algebra of operators. So we have 
the OPE of two fields: 
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Operator Product Expansion  
(OPE) 

•The sign     means that regular terms have been ignored.  

•The scale invariance of the theory has greatly simplified 
the expansion on the right hand side.  

•The structure constants          are the central data of any 
CFT, if given that theory is completely defined. 
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Operator Product Expansion  
(OPE) 

The OPE of a Primary field with the energy momentum 
operator is given by: 

 

 

This is consistent with the action of Ln on . The OPE of T 
with itself: 
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Primary Fields 

• The above OPE implies a transformation law 
for the Primary fields as : 

 

 

• This means that Primary fields are 
meromorphic differential forms: 
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Verma Module 

Assume that the state       exists such that : 

 

Easy to show that:  

 

We can also deduce that:  

We can therefore construct the Verma module: 
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Conformal Family 

The descendent states can                         be viewed as 
excited states. 

Correspondingly a conformal family        can be 
constructed by: 

State-Operator correspondence: 

To each state      there corresponds an operator     
(need not be primary) such that  
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Operator Product Expansion  
(OPE) 

•The sign     means that regular terms have been ignored.  

•The scale invariance of the theory has greatly simplified 
the expansion on the right hand side.  

•The structure constants          are the central data of any 
CFT, if given that theory is completely defined. 
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The Central Data of a CFT 

• A CFT is completely determined if we know 
the following: 

– The set of primary fields and their conformal 
dimensions for a given central charge 

– The set of structure coefficients for the OPE of the 
primary fields. 



Bootstrap Idea 

If the OPE is required to be associative strong 
conditions on the structural coefficients are imposed 
which can be used to solve for them: 

 

Pictorially this relationship can be presented as a 
crossing invariance in scattering amplitude: 
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Bootstrap Idea 

The  4-pt function can be exactly calculated 
using the bootstrap idea, since the structure 
coefficient can be computed (at least in a 
minimal model).  

Use the Mobius transformation to shift the four 
pints to z1 =z,z2 =0, z3 =infnity,z1=z; then the 
four point function is a function z and         . 
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Bootstrap Idea 

The functions Fk are called Conformal Blocks 

In case of minimal models there are a finite 
number of conformal blocks. 

 

 

 



Fusion Rules 

The OPE may be written in a compact notation: 

 

 

Where bu the notation          we mean the entire 
descendents of the primary field         , a family. 
The positive integers         indicate the number of 
occurrences of elelments of the family c in OPE 
of family a by family b. 
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Vertex Operator Algebra (VOA) 

The mathematical concept of a VOA was 
introduced by Borcherds (1986) which has 
proved to be extremely useful. The associatively 
of the OPE is automatically encoded in 
associatively of VOA. Here we shall offer an 
intuitive treatment of the subject. 



VOA 

A vertex operator algebra is a  

• vector space H, with a distinguished vector  
(the vacuum). 

•  An endomorphism                         , the 
translation operator. 

                      .  
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VOA 

• A linear map from H to the space of field 
operators F (the state-operator correspondence)   

 

 

 

 

Essentially means that a field operator is given by 
its Laurent expansion coefficients 

Such that:                            
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VOA 

1. Translation Covariance: (move the fields on the complex 

plane) 

 

 

2. Locality: (commutators of field is well behaved) for large enough N 
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VOA 

 

Vacuum is  
– invariant: 

 

– Corresponds to the identity on H 

– Generates the state-operator correspondence 
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Heisenberg VOA 

• This is the VOA of the free boson, consider the 
Heisenberg  algebra: (C is central) 

 

The field operator is given by: 

 

Locality: 
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Heisenberg VOA 

• translation 
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Conformal VOA 

• There exists a generating field (the energy-
momentum tensor) 

 

 

• The energy-momentum is given by  
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Boundary CFT (BCFT) 

• BCFT is defined over a region of the complex 
plain with boundary conditions imposed on 
the field operators 

• In particular the energy momentum tensor 
has to be defined such that we don’t get 
energy flow out of the region: 

 

• Here         is the vector orthogonal to the 
boundary 
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BCFT 

• This bc has the effect that it changes the 
Laurent expansion of T : relating the       to 

• This means that the symmetry is reduced: 

 

• We can always map the compact region on 
the complex plane to the upper half plane and 
impose bc on the real line :  
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BCFT 

This has the offshoot that correlation functions will 
combine holomorphic and anti-holomorphic 
parts, in particular the one point functions need 
no longer vanish near a boundary: 
 
 

 
the conformal weights are  
related to critical                                       (x,y) 
exponents near surfaces 
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Conformal Quantum Mechanics: CQM 

1. We have a finite number of degrees of freedom, 
hence a finite algebra is enough to make it 
integrable. 

2. To mimic conformal invariance need scale 
invariance, so the minimal set of  transformations 
are :   
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Conformal Quantum Mechanics 

3. We cannot get far without inversions: 

 

 

Together they form the Mobius transformations 
in time; so(2,1): 
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Conformal Quantum Mechanics 

q(t) is a conformal primary operator with 
dimension h, if: 

 

 

Or   
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Conformal Quantum Mechanics 

• There is clearly a problem with normalizability 
since  

 

• All this has been done in Heisenberg Picture 
and we need to extend to Schrodinger picture 
what is the Hamiltonian H which implements 
time translation, preferably three conserved 
vectors. 
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Conformal Quantum Mechanics 

• Require the symmetry group to be so(2,1): 
 
 

Where H is the Hamiltonian, D is the dilations, and K is 
the special conformal transformation. Clearly the 
symmetry operators do not commute with H, 
nevertheless we require the vacuum to be unique so it 
must be annihilated by all three operators. Here we 
face a problem. 
This problem does not exist in the Hydrogen atom 
because the Hamiltonian is the Casimir and commutes 
with all symmetry operators 
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CQM 

• The vacuum is annihilated by all three operators 

• The primary staes are taken to be eigenvectors of D 

 

 

 

• If a highest weight h-1 cannot exist. 

• For the Vacuum h=0 and highest weight, so forces K 
also to vanish. 
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Conformal Quantum Mechanics 

Consider the Hamiltonian: 

 

The wave functions are scale invariant: 

 

The generator of dilations is: 

 

The special conformal transformation is: 
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THANK YOU 
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