IPM AdS/CFT, Isfahan, Iran

5D SUSY Black Ring/CFTs

. With
Higher Derivative Terms

Hesam Soltanpanahi

University of the Witwatersrand
Johannesburg, South Africa

[K. Goldstein and H. S.]



B Plan

& 5D SUGRA + H. D. C.

& Black Ring Solution & Macroscopic Entropy
& c-extremization Approach

& Kerr/CFT Approach

& Summary



& 5D SUGRA + H. D. C.

Compactification of M-theory on a CYs3 results in N/ =2 SUGRA in 5D.
The bosonic action up to 4th order in superconformal formalism is
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related to the mixed gauge-gravitational CS term by SUSY trensformations.



Crrr: Intersection numbers of internal space CY3
CoI: Second Chern class of internal space CY3

A? = ALA, v? = v,

1 1
v = ECIJKXIXJXKa vy = §CIJKX‘]XK, vy = CrygX".

Weyl multiplet—the metric, a 2-form auxiliary field, v,,, a scalar auxiliary
field D, a gravitino wlﬁ and an auxiliary Majorana spinor '

Vector mutiplet—1-form gauge field AI, a scalar auxiliary field X! and a
gaugino Q" (where I =1,---,n, count the number of vector multiplets)
and 1 = 1,2 is an SU(2) doublet index.

Hyper multiplet—auxiliary scalar fields A%, and a hyperino (“* a=1,---,2r
refers to USP(2r) group.



& Entropy Function & Black Ring Solution

[Castro, Davis, Kraus and LarsenréO?H
[de Wit and Katmadas(09

The near horizon of SUSY black ring is given by

d 2
ds® =13, (—r2dt2 + LQ) + 12, (dY + eo 7 dt)* + 12 (d6 + sin? 0d¢?)
T

pI pI 12
Al = elrdt — = cosOdp + a' (egr dt + dvp), X' = , D= _—,
3
Q' = —4Ckp’a", e! + ega’ =0, Vgp = glAdSQ sind,
0 & ¢. The coordinates of a usual 2-sphere.
. The coordinate of ring, ¥ ~ ¢ + 4.
The radii are given by the magnetic charges p!,
1/1 1 1/3
l - l 2 — l 1 = — —C I,J K _ I
Ads, = ls» = eols: = 5 ( gC1IKP PP + 15C2IP

The macroscopic entropy is

2m (1 1 an(C 1J K I
S = 6_7T (ECIJKpIpJpK n 6021p1> _ 27T\/qo( IJKD p6p + corp')
0

in which
1 1 1
~ “C IJ K  — I
G0 = 25 (6 KD P"P" T+ 5 C2IP
[de Wit and Katmadas(09)]
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& c-extremization approach

¢ Near Horizon Isometry
The isometry of the metric are SL(2,R)xU(1)xSO(3) generated by

1

K1 = td —rbr, Ko = S( +172)0; — rtd; - 9.,
T

K3z = 8t, Ks = 81/,,

J? = —idy, J*= = eF'?(—i0p 4 cot 00,).

The first two parts of the near horizon metric is locally AdSzand this permit us to use
the c-extremization approach to find the associated central charge.
PP a[P%’raus and Larsen (05)]

The first step is choosing an appropriate ansatz,

ds® = 145,ds% s, + [5ds%:,
I
Al = elrdt — % cos0d¢ + al (eor dt + dip),

Then by extremizing thec-function

c=614315%(Lo + L1),

with respect to the [4 and [s we find their values in terms of the magnetic charges and
the value of c-function at these radii gives the average of left and right central charges.



By doing these calculation one finds,

1 I J K 1 I b3
lags, = 21ls = (ECIJKP p'p" + —corp ) ,

12
pI pI 12
Al = elrdt — == cos0de + a’(eordt + dyp), X! = , D=5—,
2 lAds> a2
3
QI = —4CIJKP‘]aK, e! + ega’ = 0, Yoy — glAdS? sin o,

and the value of c-function at this extremum point is given by

1 3
Clext. = E(CL + cr) = Cryrp'p’p™ + ZCQIPI

There is a precise agreement between the above solution and the results of entropy
function formalism.

For the associated dual CFT the gravitational anomaly yields to the difference between

left and right central charges,
1 I
Cf, —Crpr — —C
L R=7 2IP

Thus the left and right central charges are given by

1
cr, = Crixp'p’p™ + corp’, cr = Crygp'p’p™ + ECQIPI



Using the Cardy formula (in extremal limit) to compute the microscopic

entropy

cr, q 2T
Sr(ri)c W\/LTO e (6CIJKP p’p" + C 2P ) = Smac

Note that this entropy associated to a chiral CFT based on the SL(2, R)
part of the isometry of near horizon geometry of black ring such that Lg,
L1 and L_1 are respectively proportional to K71, Ko and K3 isometries of

the geometry.

Thus there is a Virasoro algebra with the above central charge

c C c C
(L), L] = (m = )Ly, + T2 (m® = m)dp

such that
toy — roy
o =1, 1)
%(tQ +772)8; — 118y — 670%
and

cr, = Cryxp'p’p™ + corp’



& Kerr/CFT approach

[Guica, Hartman, Song, Strominger(08)]
o Asymptotic Symmetry

Near horizon metric of 5D Black Ring :
~D 2

ds? = %(—ﬂd# 1 —) 1 —(d92 +sin2 0de2) + L2(di + egrdt)?
- 1 ~_ D
p- = ECIJKP Ipt 7 62129 L= eq

Consistent boundary conditions (t,r,@,gb,w):

/ r2 1/7“2 1/r r 1 \

1/r3 1/r% 1/r% 1/r

hlu]/ ~ O 1/7“ 1/7“ 1/7“

1/r 1

\ L)

The generators associated to these boundary conditions are given by
Cn = —e_mwaw —inr e "y,

such that satisfy a Virasoro algebra

i[Cm, Cn] = (M — n)Cm—l—n-



¢ Computing the central charge

1st Point: To extend the Kerr/CFT approach for theory with higher
derivative corrections it is useful to do the calculations in non-basis coor-

dinates.
[Azeyanagi, Compere, Ogawa, Tachikawa, and Terashima(09)]

T he vielbeins associated to near horizon geometry of black ring are

~

el = Brdt, S ﬁdr, eé = Bd@,
2 2r 2
b = gsin 0do, eV = L(dyp + eqr dt),
and the variation of the metric under Virasoro generators is given by
£Cnef =1in e_mwef, L’Cner’? = —egn? e~y (eIZ — ef> :
Egneg = Ecne(g =0, ﬁgneIZ — ine Y (ezg — 265) .

2nd Point: The Kerr/CFT approach was extended to the case with CS
term and it was shown that for a theory with gravity and also other fields,
the central charge is not affected by non-gravitational fields.

[Compere, Murata, and Nishioka(09)]
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Using the BBC method the central charge is given by
[ Barnich and Brandt (01), Barnich and Compere (07), Compere (07)]

(B) = 12@'/

. KOUILe i 9]

3
n
| 3: Stands for the term of order n3

0>_: Spatial boundry

kZZ’U [ﬁc_ng; g] = — 2 [XCdLCnvccin -+ (ECnX)Cdv[ch]n -+ LCanCSn

— E[L¢,9,L¢ 94l
Covariant derivatives: are defined with respect to the original metric g.
X and W and E: are given by

(WC)C3C405 — _dezadeeabC3C4C5 — Q(VdXCd)C3C4C57
1 3
Ecseacs = 5 (—EZ“decsgce A 8Geq + 2275 g.q A 5gbe) €abescacs:

in which
Zabcd _ 0L

- )
_ 5Ra,bcd _ _
[ Azeyanagi, Compere, Ogawa, Tachikawa, and Terashima(09)]
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The important points for calculating the central charge are

1- The Lie derivative of vielbeins with respect to the diffeomorphisms
2- The isometry SL(2,R) x U(1)
3- The t — 1 reflection symmetry of the near horizon geometry

Doing some algebric calculations the central charge associated to the
Virasoro algebra is derived

6 eg

(k) — —12eg /Z ZabcdeabECdVOKZ) = Smac

7T
In the last equality we used the Iyer-Wald formula for macroscopic entropy

of a black hole which is generalization of Bekenstein-Hawking formula
when the higher derivative terms are appeared.
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The cental charge is

k) = ¢ g ppt +eap! =¢f

Note that this central charge equals to the left central charge computed
by c-extremization formalism.

This equality was shown for SUSY black ring without higher derivative
corrections.

M) =cp = cp = Cryrp’p’p"
and

mic— mic_SmaC

[ Loran and Soltanpanahi (08)]
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As in the other application of Kerr/CFT approach, to compute the mi-
croscopic entropy we should derive the Frolov-Thorne temperature. The
temperature is an intrinsic feature of metric and its definition is not cor-

rected by higher derivative terms.
[Azeyanagi, Compere, Ogawa, Tachikawa and Terashima (09)]

So as usual one can find the Frolov-Thorne temperature from the ty cross
term of near horizon geometry

1
ITeT = —.
TEeQ
Often there is a factor 2 in the denominator but remember that the

period of ) coordinate in our notation is 4.

The microscopic entropy of supersymmetric black ring in Kerr/CFT ap-
proach can be computed by other form of Cardy formula,

27 /1 1
(—CIJKPIPJPK + —corp ) = Sr(r(f.)c = Smac
eg \0 o
ASs we expect this microscopic entropy equals to the microscopic entropy

calculated by c-extremization formalism and also equals to the macro-
SCopic entropy.

St = 5 3 (k>TFT
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Black String Boost . Bjack Ring
Compactification
& Summary: \ NH NH
AdSs3 AngXSl(IocaIIy AdS3)
Isometry Isometry
SL(2, R)LxSL(2, R)x - SL(2,R).xU(1)
c.ext. c.ext.
cr - ORI, Kerr/CFT
Crixp'p’p"+cop’  Crixp'p’pX+5corp’ cM=c,
S =S e ="Smac
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Thank you for your attention
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